LESSON PLAN: (STRUCTRUAL MECHANICS)			
Discipline :	CIVIL ENGINEERING		
Faculty :	ASHIS RANJAN PATEL		
Semester :	3RD		
Duration :	14 WEEKS (15 th September 2022 to 22 nd December 2022)		
Work Load :	Lecture :	5 Lectures per week (50 minutes per Class)	
Week	Week	Theory	
1 St	Day 1 st	Basic Principle of Force Moment	
1	2^{nd}	Basic Principle of support conditions	
	2 3rd	Conditions of equilibrium Free body diagram	
		Poview of CC and ML of different sections	
	<u>4th</u>	Introduction to stresses and strains: Mechanical properties of materials – Rigidity	
	5	Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness	
2 nd	6 th	Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -	
	7 th	Types of strains - Tensile, Compressive and Shear strains, Complimentary shear	
	,	stress - Diagonal tensile / compressive Stresses due to shear	
	8 th	Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio,	
	9 th	computation of stress, strain, Poisson's ratio, change in dimensions and volume	
	10 th	Hooke's law - Elastic Constants. Derivation of relationship between the elastic	
	10	constants.	
3rd	11 th	Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a	
	12 th	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress,	
		Percentage elongation,	
	13 th	Percentage reduction in area, Significance of percentage elongation and reduction in	
	14 th	Deformation of prismatic bars due to uniaxial load	
	15 th	Deformation of prismatic bars due to its self weight	
	1.5	Detormation of prismatic bars due to its sen weight.	
4th	16 th	Principal stresses and strains: Occurrence of normal and tangential stresses	
	17 th	Concept of Principal stress and Principal Planes	
	18 th	major and minor principal stresses and their orientations,	
	19 th	Mohr's Circle and its application to solve problems of complex stresses	
	20 th	Stresses in beams due to bending: Bending stress in beams –	
5 th	21 st	Theory of simple bending – Assumptions	
	22 nd	Moment of resistance – Equation for Flexure– Flexural stress distribution –	
	23 rd	Curvature of beam Position of N.A. and Centroidal Axis – Elexural rigidity – Significance of Section	
	23	modulus	
	24 th	Shear stresses in beams: Shear stress distribution in beams of rectangular	
	25 th	circular and standard sections symmetrical about vertical axis.	
6 th	26 th	Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion	
	27 th	torsion of solid and hollow circular sections, polar moment of inertia, torsional	
		shearing stresses, angle of twist, tensional rigidity, equation of torsion	
	28 th	Combined bending and direct stresses: Combination of stresses, Combined direct	
		and bending stresses, Maximum and Minimum stresses in Sections	

	29 th	Conditions for no tension, Limit of eccentricity, Middle third/fourth rule,
	30 th	Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls
7 th	31 st	Columns and Struts, Definition, Short and Long columns End conditions,
	32 nd	Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column,
	33 rd	Euler's theory of long columns
	34 th	Critical load for Columns with different end conditions
	35 th	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL),
8 th	36 th	Types of Supports: Simple support, Roller support,
	37 th	Hinged support, Fixed support,
	38 th	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction,
	39 th	Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium.
	40 th	Problem solving of static equilibrium
9 th	41 st	Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only,
	42 nd	S.F and B.M diagrams for Cantilevers,
	43 rd	Simply supported beams and Over hanging beams, Position of maximum BM,
	44 th	Point of contra flexure
	45 th	Relation between intensity of load, S.F and B.M.
10th	46 th	Problem solving of S.F and B.M
	47 th	Shape and nature of elastic curve (deflection curve);
	48^{th}	Relationship between slope,
	49 th	deflection and curvature (No derivation),
	50 th	Importance of slope and deflection
11th	51 st	Problem solving of slope and deflection
	52 nd	Slope and deflection of cantilever
	53 rd	Slope and deflection of simply supported beams under concentrated load
	54 th	Slope and deflection of uniformly distributed load by Double Integration method
	55 th	Slope and deflection of uniformly distributed load by Macaulay's method
12th	56 th	Problem solving on UDL
	57 th	Indeterminacy in beams
	58 th	Principle of consistent deformation/compatibility
	59 th	Analysis of propped cantilever
	60 th	fixed and two span continuous beams by principle of superposition
13th	61 st	Problems of propped cantilever
	62 nd	Problems of fixed and two span continuous beams
	63 rd	SF and BM diagrams (point load and udl covering full span)
	64 th	Problems of SF and BM diagrams
	65 th	Trusses : Introduction
14th	66 th	Types of trusses
	67 th	statically determinate and indeterminate trusses
	68 th	degree of indeterminacy
	69 th	stable and unstable trusses
	70 th	advantages of trusses