LESSON PLAN: (Engg.Mathematics-III)		
Discipline :	Electrical Engineering	
Faculty :	DR. SAURI NARAYAN PRADHAN	
Semester :	$3^{\text {RD }}$	
Duration :	14 WEEKS (15 ${ }^{\text {th }}$ September 2022 to $\mathbf{2 2}^{\text {nd }}$ December 2022)	
Work Load :	Lecture :	4 Lectures per week (50 minutes per Class)
Week	Week Day	Theory
$1^{\text {st }}$	$1^{\text {st }}$	Complex numbers(Fundamentals, Conjugate, Modulus, Amplitude)
	$2^{\text {nd }}$	Complex numbers(Geometrical Representation and Properties)
	$3^{\text {rd }}$	Complex numbers(Cube root of Unity and its Properties)
	$4^{\text {th }}$	Complex numbers (problems on ω)
$2^{\text {nd }}$	$5^{\text {th }}$	Complex numbers (De Moivre's Theorem)
	$6^{\text {th }}$	Complex numbers (Problems on De Moivre's Theorem)
	$7^{\text {th }}$	Matrices (Rank of a Matrix and Problems)
	$8^{\text {th }}$	Matrices (Elementary row transformation and rank of the matrix)
$3{ }^{\text {rd }}$	$9^{\text {th }}$	Matrices (Rouche' Theorem and consistency of a system of linear equations)
	$10^{\text {th }}$	Matrices (Solving equations in three unknowns testing consistency)
	$11^{\text {th }}$	Differential Equations(Define Homogeneous and non- Homogeneous D.E. with constant coefficients with examples
	$12^{\text {th }}$	Differential Equations(Solutions of Homogeneous Differential Equations, Rules for finding C.F.)
4th	$13^{\text {th }}$	Differential Equations (Problems on Solutions of Homogeneous Differential Equations)
	$14^{\text {th }}$	Differential Equations (Derive rule for finding P.I. $\mathrm{f}(\mathrm{x})=e^{a x}, \mathrm{f}(\mathrm{x})=x^{m}$ and problems)
	$15^{\text {th }}$	Differential Equations (Derive rule for finding P.I. $\mathrm{f}(\mathrm{x})=\sin (\mathrm{ax}+\mathrm{b}) /$ $\cos (\mathrm{ax}+\mathrm{b})$ and problems)
	$16^{\text {th }}$	Differential Equations Derive rule for finding P.I. $\mathrm{f}(\mathrm{x})=e^{a x} \mathrm{v}(\mathrm{x})$ and problems)
$5^{\text {th }}$	$17^{\text {th }}$	Differential Equations(General solution of non- homogeneous differential equations)
	$18^{\text {th }}$	Differential Equations(Define P.D.E, Formation of P.D.E by eliminating arbitrary constants and arbitrary functions)
	19th	Differential Equations(P.D.E.of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$)
	$20^{\text {th }}$	Differential Equations (Solve P.D.E.of the form Pp+ Qq = R)
$6^{\text {th }}$	$21^{\text {st }}$	Laplace Transforms (Gamma function and its Problems)
	$22^{\text {nd }}$	Laplace Transforms (Define Laplace Transform and Inverse Laplace Transform, Derivation of L.T.of standard functions)
	$23^{\text {rd }}$	Laplace Transforms (Existence of L.T., Explanation of linear and ist shifting property)
	$24^{\text {th }}$	Laplace Transforms (Problems on Laplace Transforms)
$7^{\text {th }}$	$25^{\text {th }}$	Laplace Transforms (L.T. of derivative, Integrals and its Problems)
	$26^{\text {th }}$	Laplace Transforms (Multiplication by t^{n}, Division by t and its Problems)

	$27^{\text {th }}$	Laplace Transforms (Problems on Laplace Transforms)
	$28^{\text {th }}$	Laplace Transforms (Inverse Laplace Transform)
$8^{\text {th }}$	29th	Laplace Transforms (Rules for finding Inverse Laplace Transform)
	30th	Laplace Transforms (Inverse Laplace Transform by Partial Fraction)
	$31^{\text {st }}$	Laplace Transforms (Convolution Theorem and its Problems)
	$32^{\text {nd }}$	Laplace Transforms (Solve problems on Inverse Laplace Transform)
$9^{\text {th }}$	33rd	Fourier Series (Define Periodic function and its examples)
	34th	Fourier Series((Dirichlet' condition for the Fourier expansion of a function and its convergence)
	35th	Fourier Series(Euler' Formula for finding Fourier series)
	36th	Fourier Series (Fourier series of continuous functions)
10th	$37^{\text {th }}$	Fourier Series(Fourier series of functions having point of discontinuity)
	38th	Fourier Series (Problems on Fourier series)
	39th	Fourier Series (F.S. of functions with arbitrary intervals)
	$40^{\text {th }}$	Fourier Series (Problems on F.S. of functions with arbitrary intervals)
11th	41 ${ }^{\text {st }}$	Fourier Series (define odd/even function ,Find Fourier series of odd/even function)
	$42^{\text {nd }}$	Fourier Series (Examples on Fourier series of odd/even function)
	$43^{\text {rd }}$	Fourier Series (Half range series and its Problems)
	44th	Fourier Series (Examples on Half range series)
12th	45th	Numerical Methods (Derive iterative formula for finding solutions of Algebric equations by Bi -section formula)
	$46^{\text {th }}$	Numerical Methods (Problems on bi-section method)
	$47^{\text {th }}$	Numerical Methods (Solution by Newton's Raphson method)
	48th	Numerical Methods (Problems on Newton's Raphson method)
13th	49th	Finite difference \& Interpolation (Forward and backward difference and its table)
	$50^{\text {th }}$	Finite difference \& Interpolation (Shift operator and relation between $\mathrm{E}, \Delta, \nabla$ and related problems)
	$51^{\text {st }}$	Finite difference \& Interpolation (Newton's forward and backward difference formula and its related problems)
	$52^{\text {nd }}$	Finite difference \& Interpolation (Lagrange's interpolation formula for unequal intervals and its related problems)
14th	53 rd	Finite difference \& Interpolation (Newton's cotes formula , Numerical integration by Trapezoidal Rule)
	$54^{\text {th }}$	Finite difference \& Interpolation(Numerical integration by simpson 1/3 rule)

	$55^{\text {th }}$	Finite difference \& Interpolation(Problems on Numerical integration)
	$56^{\text {th }}$	Finite difference \& Interpolation(Problems on Numerical integration)

