

| $4^{\text {th }}$ | $1^{\text {st }}$ | CIRCUIT ELEMENTS AND ANALYSIS: <br> 3.1 Active, Passive, Unilateral \& bilateral, Linear \&Non linear elements |
| :---: | :---: | :---: |
|  | $2^{\text {nd }}$ | 3.2 Mesh Analysis, Mesh Equations by inspection <br> 3 . 3 Super mesh Analysis |
|  | 3rd | 3.4 Nodal Analysis, Nodal Equations by inspection |
|  | $4^{\text {th }}$ | 3.5 Super node Analysis. |
| $5^{\text {th }}$ | $1^{\text {st }}$ | 3.6 Source Transformation Technique |
|  | $2^{\text {nd }}$ | 3.7 Solve numerical problems (With Independent Sources Only) |
|  | 3rd | 4. NETWORK THEOREMS: <br> 4.1 Star to delta and delta to star transformation |
|  | $4^{\text {th }}$ | 4.2 Super position Theorem |
| $6^{\text {th }}$ | $1^{\text {st }}$ | 4.2 Super position Theorem |
|  | $2^{\text {nd }}$ | 4.3 Thevenin's Theorem |
|  | 3rd | 4.3 Thevenin's Theorem |
|  | $4^{\text {th }}$ | 4.4 Norton's Theorem |
| $7^{\text {th }}$ | $1^{\text {st }}$ | 4.5 Maximum power Transfer Theorem. |
|  | $2^{\text {nd }}$ | 4.6 Solve numerical problems (With Independent Sources Only) |
|  | 3rd | 5. AC CIRCUIT AND RESONANCE: <br> 5.1 A.C. through R-L, R-C \& R-L-C Circuit |


|  | $4^{\text {th }}$ | 5.2 Solution of problems of A.C. through R-L, R-C \& R-L-C series Circuit by complex algebra method. |
| :---: | :---: | :---: |
| $8^{\text {th }}$ | $1^{\text {st }}$ | 5.3 Solution of problems of A.C. through R-L, R-C \& R-L-C parallel \& Composite Circuits |
|  | $2^{\text {nd }}$ | 5.4 Power factor \& power triangle. |
|  | 3rd | 5.5 Deduce expression for active, reactive, apparent power. |
|  | $4^{\text {th }}$ | 5.6 Derive the resonant frequency of series resonance and parallel resonance circuit |
| $9^{\text {th }}$ | $1^{\text {st }}$ | 5.7 Define Bandwidth, Selectivity \& Q-factor in series circuit. |
|  | $2^{\text {nd }}$ | 5.8 Solve numerical problems |
|  | 3rd | 6. POLYPHASE CIRCUIT <br> 6.1 Concept of poly-phase system and phase sequence |
|  | $4^{\text {th }}$ | 6.2 Relation between phase and line quantities in star \& delta connection |
| $10^{\text {th }}$ | $1^{\text {st }}$ | 6.3 Power equation in 3-phase balanced circuit. |
|  | $2^{\text {nd }}$ | 6.4 Solve numerical problems |
|  | 3rd | 6.5 Measurement of 3-phase power by two wattmeter method. |
|  | $4^{\text {th }}$ | 6.6 Solve numerical problems. |
| $11^{\text {th }}$ | $1^{\text {st }}$ | TRANSIENTS: <br> 7.1 Steady state \& transient state response. |
|  | $2^{\text {nd }}$ | 7.1 Steady state \& transient state response. |


|  | 3rd | 7.2 Response to R-L, R-C \& RLC circuit under DC condition. |
| :---: | :---: | :---: |
|  | $4^{\text {th }}$ | 7.2 Response to R-L, R-C \& RLC circuit under DC condition. |
| $12^{\text {th }}$ | $1^{\text {st }}$ | 7.3 Solve numerical problems |
|  | $2^{\text {nd }}$ | 7.3 Solve numerical problems |
|  | 3rd | 8. TWO-PORT NETWORK: <br> 8.1 Open circuit impedance (z) parameters |
|  | $4^{\text {th }}$ | 8.2 Short circuit admittance (y) parameters |
| $13^{\text {th }}$ | $1^{\text {st }}$ | 8.3 Transmission (ABCD) parameters |
|  | $\begin{aligned} & 2^{\text {nd }} \\ & 3^{\text {rd }} \end{aligned}$ | 8.4 Hybrid (h) parameters. |
|  | $4^{\text {th }}$ | 8.5 Inter relationships of different parameters. |
| 14th | $1^{\text {st }}$ | 8.5 Inter relationships of different parameters. |
|  | $2^{\text {nd }}$ | 8.6 T and $\pi$ representation. 8.7 Solve numerical problems |
|  | 3rd | CHAPTER \#9 FILTERS: 9.1 Define filter |
|  | $4^{\text {th }}$ | 9.2 Classification of pass Band, stop Band and cut-off frequency. |

