SUNDARGARH ENGINEERING SCHOOL, KIREI LESSON PLAN

Subject : CIRCUIT AND NETWORK THOERY

Discipline: ELECTRICAL ENGINEERING

Faculty: UDAYA SHNAKAR BEHERA

Semester: 3RD

Week	Week Day	Theory
1 st	1 st	1. MAGNETIC CIRCUITS
		1.1 Introduction
	2 nd	1 . 2 Magnetizing force, Intensity, MMF, flux and their relations
	3rd	1 . 3 Permeability, reluctance and permeance
	4 th	1 . 4 Analogy between electric and Magnetic Circuits
2 nd	1 st	1 . 5 B-H Curve
	2 nd	1 . 6 Series & parallel magnetic circuit.
	3rd	1 . 7 Hysteresis loop
	4 th	2. COUPLED CIRCUITS:
		2 . 1 Self Inductance and Mutual Inductance
3 rd	1 st	2 . 2 Conductively coupled circuit and mutual impedance
		2 . 3 Dot convention
	2 nd	2 . 4 Coefficient of coupling
	3rd	2 . 5 Series and parallel connection of coupled inductors.
	4 th	2 . 6 Solve numerical problems

4 th	1 st	CIRCUIT ELEMENTS AND ANALYSIS:
		3 . 1 Active, Passive, Unilateral & bilateral, Linear &Non linear elements
	2 nd	3 . 2 Mesh Analysis, Mesh Equations by inspection
		3 . 3 Super mesh Analysis
	3rd	3 . 4 Nodal Analysis, Nodal Equations by inspection
	4 th	3 . 5 Super node Analysis.
5 th	1 st	5 15 Super node Finallysis.
J	1	3 . 6 Source Transformation Technique
	2 nd	3 . 7 Solve numerical problems (With Independent Sources Only)
	3rd	4. NETWORK THEOREMS:
		4.1 Star to delta and delta to star transformation
	4 th	4.2 Super position Theorem
6 th	1 st	4.2 Super position Theorem
	2 nd	4.3 Thevenin's Theorem
	3rd	4.3 Thevenin's Theorem
	4 th	4.4 Norton's Theorem
7 th	1 st	4.5 Maximum power Transfer Theorem.
	2 nd	4.6 Solve numerical problems (With Independent Sources Only)
	3rd	5. AC CIRCUIT AND RESONANCE:
		5.1 A.C. through R-L, R-C & R-L-C Circuit

	4 th	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method.
8 th	1 st	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits
	2 nd	5.4 Power factor & power triangle.
	3rd	5.5 Deduce expression for active, reactive, apparent power.
	4 th	5.6 Derive the resonant frequency of series resonance and parallel resonance circuit
9 th	1 st	5.7 Define Bandwidth, Selectivity & Q-factor in series circuit.
	2 nd	5.8 Solve numerical problems
	3rd	6. POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence
	4 th	6.2 Relation between phase and line quantities in star & delta connection
10 th	1 st	6.3 Power equation in 3-phase balanced circuit.
	2 nd	6.4 Solve numerical problems
	3rd	6.5 Measurement of 3-phase power by two wattmeter method.
	4 th	6.6 Solve numerical problems.
11 th	1 st	TRANSIENTS:
		7.1 Steady state & transient state response.
	2 nd	7.1 Steady state & transient state response.

	3rd	7.2 Response to R-L, R-C & RLC circuit under DC condition.
	4 th	7.2 Response to R-L, R-C & RLC circuit under DC condition.
12 th	1 st	7.3 Solve numerical problems
	2 nd	7.3 Solve numerical problems
	3rd	8. TWO-PORT NETWORK:
		8.1 Open circuit impedance (z) parameters
	4 th	8.2 Short circuit admittance (y) parameters
13 th	1 st	8.3 Transmission (ABCD) parameters
	2 nd 3 rd	8.4 Hybrid (h) parameters.
	4 th	8.5 Inter relationships of different parameters.
14th	1 st	8.5 Inter relationships of different parameters.
	2 nd	8.6 T and π representation. $8.7 \text{ Solve numerical problems}$
	3rd	CHAPTER #9 FILTERS:
		9.1 Define filter
	4 th	9.2 Classification of pass Band, stop Band and cut-off frequency.

HOD, Electrical Department

Principal