ADVANCED CONSTRUCTION TECHNIQUES
 \& EQUIPMENT

Chat ADVANCE CONLTKOCTION MATDKIAL
Ctbre:-
\rightarrow The fibre is a fiement of thread ithe fioce of material. This term sometimes auso reflers to a raw materital that con be drown into truead.
\rightarrow Hibre is a smas pecte of reinfoncing matarial tomeasing certain characterthties proporties. It is a long and thin material on be irrculan on $\{1 a t$.

- Ftbre Es derired by a parametor called aspetA rakio.

Aspect reatio 1-
It is the ratio of lengh of fibrue to in diameter ar lears lasertal diameter or dimenion in care of fias fibre. is ranges from so-150.
Types of fibre:-
a) sticel führe
b) taribon fibue
c) Glans fibre
d) planic fiore
e) Asbertor fêore
f) Jute fibre
7) cellulone fire
a) steer fibre :-
\rightarrow steel fincer is one of the mors commonty uned fibres. geseratly round formen are ured. The dianeters may vary from $0.25-0.7 \mathrm{mmen}$.
\rightarrow The seek fotore Es fikely to get ruused and lare sone of tis sheorgth.
\rightarrow use of wed fibre makes ufynifficana improvements in ikrurtad, impoch and fartue strength of
\rightarrow The sued fibres wave fairly wijh temix sirengh if., $280 \mathrm{~N} / \mathrm{mm}^{2}-44 \mathrm{~N} / \mathrm{mmp}^{2}$ as weas is WJigh Young's Modulus. There are useful for timpansing more fircural steeryth as umpared to poryprosplete fibres.

Properties of steel filores :-
Following are the Froperties of steet fibre.
a) steet fibres are more spreng. tough and hard.
b) Then are more smang elantit in rolluke and avoid corceivon and rums maim.
c) They increare the temite sanetgit of concrete.

Usen :-
a) This fibite has been evtomively ured in various typer of shructures and fon senlars of reads, airfleld poremenas and bridye dees.
b) sheel fibrues are wived in thoturese.
c) They are used in frecars concrete construction.
d) They arce lased in furnel sining woret
b) carbon fibre:.
\rightarrow Carhon fibres have very kigh temille wreaghth $2.14 \mathrm{~N} / \mathrm{mm}^{1}$ $2815 \mathrm{~N} / \mathrm{ma}^{2}$ and Young's medulus chopped carbon fiboren with candom taruay moy wed. There are, very corlly.
\rightarrow It has been reportid that coment conplyite made taरith Cartbon fibre as reirfortumens wiu have very kigh medulus of elarricity and fucumal treergth. The prited shudies rave been thelar jead dumaritity.
Pruperties of carthon fibmes:-
\rightarrow cartoon fibre ane chovitally inera and are werisant to As cocurarion.
\rightarrow Then have hish perripe strength.
\rightarrow carsos Fiblue wave sow therunat expamiten and the fibres consean absit 85% carbon has yesd flewueal streergth.
\rightarrow They ane dailebte in tow weljht.

UMES :-
\rightarrow The we ef cormon fibres for sutuctures like cladsifiy, ponels and shalls with have promising fouture.
\rightarrow caekon fibien are mant comenty wes to reinforcerents compohtie it marorian.
\rightarrow There are whed in reirfortement carbon in whith abery inctease semfir streingh of tencitece.
क) trian fibree :-
\rightarrow Glam may be softered and drawn mechanically into trectad ort Jlau ortod that es fenen than sik. A yan syand esopiened of 60 fitamenys each filoment hakiny a diometort 70.050 ky $/ \mathrm{m}^{2}$,
 human wairt bua hare a Aurulte-stugngth of sheel. Thele Hoy be woven inats fabrte sr wheol in leenely pouked fisom for beth tround and Ahermal imalauton in buthling
\rightarrow Thorimal conduchivity of the naserint ranyes fitom
$0 . \operatorname{mgy}-0.04 \mathrm{k}$ - ad/m/kr . dy defonding upon the bulk temithy, Teas hoove shotor Ahat 2 sinm of glaw chot In equikalony in hemon of theconal innalation of 42 mm of bortick ort 65 Cm of concresere.
Profertier of Jam fibee :-
\rightarrow Gtan ficter has noed hingunal invulation .
 etonthlaree.
$\Rightarrow 35$ han gond semiti surengh.
Usen of Glam febree :-
 courtiogated shesting, wointy uned for cos if fins and alse wed fort inatrion faroting ard. decoroution.
\rightarrow st in used fort sound deadening and thermal inviatation in valk, fresen and ceilings
\rightarrow Nasural Jute fibres are ured in plumbing werers.
\rightarrow The paus fibres are uned for focking and makieng \{abries and feets.
\rightarrow Uked for macing acid. Frouef and fine proof faborites
\rightarrow uved for maverial of focking for heas, sound, shetrie inrulation.
Q. Write down the tures of fibtes as contruction nateriot".
$\xrightarrow{N H} \rightarrow$ fibtte is a smas pixe of reinforting maveriou poveiong ceruain characsoctripies properties. Thaly can be circuiar on flat. The fibre is often devcibed by a converient porameter caused "aspoct ratio". The aspect ratio of the fiore is the nario of its lergith -to its diamerert. Trivar uppea rasio ranges from $30-150$ -
\rightarrow frore reinforced concrete (FGC) is toncrete consaỉing fibrous material which En incmeases às structurtal integring. I contains shou dinatele fibres that ane unifoeming dermibured and randomly arienved. fibores ivclude shoek fibres, flam fibnes; Fymheric fibres and Natival fitmen,
\rightarrow pibre - reinfoncement Es mainly wed in thatcrexe, but can also be wed in nemal conatete. Fiforce reinfouted norseal concrete are mortly uved fers on- ground flosts and pavemeny, lous car be comidered for a wide manye of conrruction paris eithort alone on with hand-tied trian.
\rightarrow conotete reinforced with fibres is ten erosruive alan hand-tien rehar, whise stit iniverlasing the semile shengeh many times. Shape, dimeriis and length of fike is imporstans. A thin and theres fibete for ouaple shors hait. shared qlass fibres, will onty be effetive the frest hours after pouming the cancrete but will raif increase the conutete temile strength.

Scanned by CamScanner
4) Plantic fibre :-
\rightarrow Wigh patymers ase the mayic comaructen materlath of ake curtient etra. Thas include Ingineening marerials fike flostitr, rubber, fiore glan ine:
\rightarrow parait spociauly have orrepfed an findispervable panititen if ourt daily Life. They have ceplocech a namber of 2raditionatly used mavertions.
\rightarrow The prectens Ahemselven in every uriger of tife. AL modon Endustreies tike rodifs, telephone, wutomolofies,
 Pamicity. Mawitity is the property, by virewe of cokion t a masortau unterges a perinanent deformanisn, when. Subjetsed an heavy and contricuow stren or frewuree.
\rightarrow Thereforte, in its lowoolest maxithy, thony morerious itke rtibler, glom, shettoe can be stermed on plastic. But now the term pastic han a prective and ifmited meaning. Proporties of plamitn:-
\rightarrow flaties ame very thyhs in weinht.
\rightarrow plantics hove fow thermul comeducaivity.
\rightarrow Plawtic Cun be Arandperent, Arannusen ort Bpapue. .
\rightarrow platitis can be formed ard moulded inac ony shape
\rightarrow Plositen hove zood stand absortition properifen, geed terive stenngth yond restinance to peeling and geod Aiterioral daberital).
\rightarrow Advantazer of lloxafor:-
\Rightarrow Pasaics are Grailable in a coide reanse, of colpune of and Moden.

1) Thermosofiening manies:-

There are auso cauled theomoplantien and are foumed by addies, telymerization. There platics on be seftened by heation. reswaped and reused as mary thes as desined. Tore are stuble in sultable organic solverts.

Te comine ei, of pits plastic are pelythene Polyvingl, cellutore riteare sc.
2) Termosenting planties:-
this the of plastien ave foemed by cordersarion. folymerization. There flaticn are cannot be remoulaled and newed. The thermosesting planties arce incotichle in orgaric soveñs.

$$
\text { The Es } g \rightarrow \text { Bacelic, wheseri er. }
$$

\rightarrow There are forsod by mannesizatim \rightarrow There are faired by melymerization by addifer.

> by condervation.
 of tung chains with regfifile reporics of chains, foined by number of trou-ins.

Tomiress atou-lints.
\rightarrow The secondarey tonds befween \rightarrow The bend metain sireengh ufon the choins are very weak hearing, with donet pa brecken can be exaly broken by on aptying wean or manure. heat or menume.
\rightarrow wean converss where framicn fino trey reain theitr srigigel clape a fluid natecint. vence, they con and structure even on heasing so be reshaped and rewed. Ahey can nea be rebiaped a revued. \rightarrow They are whanlly wokk, sof \rightarrow They are shony, hard and
and tess brithle
mare beitule.
\rightarrow Betaure of werk bonds, they \rightarrow Betame of trong bords, wey are sotubse in arganic are is soluste th orpaik somens. sotwens.

PVC (polypingl chtride): -
\rightarrow It in one of the mom iominong used polymers produced by the rolymeritation of viny chbrctiden. It Es widely empleyed in the fabrication of phatier.
\rightarrow Pve 'Is unually avalable commerclauy in the form of a white anerpheses proder having a deritiy of abol4 $1.4 \mathrm{~cm}^{-3}$
\rightarrow pre can be maruplactured in enpended ort cellulart fort. In in available in 1100 forms in frevible and in rifyid foem. It Can be easily moulded and exarunded into desimed shoe. The foents are oblained by solvers welding.
\rightarrow mis in the cheapest and mom widely wed plontic. pruperties of pre :-

\rightarrow per has terdericy to decompore whan ft is weented orr eupaned 4e sursegne with teme.
\rightarrow if Es resfizante to infoct invariahly deterionates whinthive
$\rightarrow 34$, betomer $\operatorname{sef} 4$ beyond $80^{\circ} \mathrm{C}$. When hated to morke than $160^{\circ} \mathrm{C}$, of a it dot disintegrater and Fiva off hydrepen
chroride.
\rightarrow Ste elpctcical mpopectien are not as yood as thens, of rubber, but is sffers mort meristance to orymen, ozone and sundight.
\rightarrow 3t has light wefigh and mexistance to wear. Unes of pre:-
\rightarrow It G whed for flevting, wall focing, various ewrumions the hand railes, sxier boardor, files, frueks eac.
\rightarrow In ured for cable sackess, lead-wfite insulation, fabrefe, coatiry etc.
\rightarrow Es En cond for corrugated roofing shoets, wain water poole.
\rightarrow It Is wred to manufacturte water fifes anof of is acreuories vais coosts and Thower curtabis.
\rightarrow it In ured in tlanic prensuze pife system for pelelines of water and sewer.
\rightarrow It is cued in magneiic strip conds, vingl slding, windsw Propfies, plumbing and conduit fexturtes, quamphene mecteds ok. RPVC (rigid polyvingl chlaride): -
The pifid polyvingl chlortide (RPVC) Is tilio known an Ulika-plarticized polyvingt chioride (upve). This material Es available in a range of coloures and finfined includirg a Phoro-effect tood finiuh and is used as a substifude fort painted toond,
Properties of Rpve:-
\rightarrow RPVC is move durable and hard:
\rightarrow it was wijh tembe sivanoth.
\rightarrow It in motef reigid and has infh resistance to chenical acrion.
\rightarrow is is corteresion rertrance.
GRP (Glan reinferced plastic) :-
This is a composite materias made of a plastic reeinforced by fine ylars fitbres. This plantic of formed by combining The glan fibres and plasic revim. The yais fibres are verry stapory in torution bel weak in compreevion, where as the plastie resins are strency in compreuion and wear in reryion.
CPVC (chlocinated polyvinyt chionide):-
\rightarrow epve stands for chlorinated polyvingk cheretide - It Is a Ahermoplanic pife fitting maseriai made of compounds.
\rightarrow cpre produchs aree specifically ased for polable water ditrivibusion and corrtonive fluid handing indurary exc. St is very cans-effeotive system.

HDP (High pensity palyethyizene):-
\rightarrow It Es a thermopiastic polymert frenduced from monomer Atrplene.
\rightarrow it Rn some simen called alkehwene or polgithene, propertien of HDP :-

$$
\begin{aligned}
& \text { sersity }=940 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { mouing poin }=130 \cdot 8^{\circ} \mathrm{r} .
\end{aligned}
$$

utes:-
34 is sued in hare and tlantie moviling envelope. Ftore reinforced polsmer :-
\rightarrow It is also coued thote treinforceed plartic.
\rightarrow It es a composite material made up of a posymer matrix. teinfared with fibre.
\rightarrow The fibres are thualy flan, carkon and balalt.
\rightarrow fRR are conmonty ured in the evespace, automate marine and construction onduatries.
\rightarrow It is auso ured for sacergthening the beam, column and siab of a building and betidge.
Aruffiat Himber :-
Preperties of artfificial fimber :-

1) Weather Revistance:-

It skould poners adequase esiutance apainn weathering effeets such as abterinate driging and wetting, altecnate heating and coesing betanse of tomperature vuriations, wide. efiect esc.
7) Durability:-

Fr Ikoutd be tapoble of restaring the vartious action dre to fungal irreets, chomicar, frypical and mechanical apereies.
3) Fire Reresrance :-

The artificial timber should offer sufficient resersanss against fire so that it does not easily ignite. A helps in fire protection in buildings.
4) workability:-

The arifficial timber should be easily wrikalte and should ne. clog the teeth of saw. Is should also be capable of being easily planned in made smorth.
5) Elarricing :-

This timber should be capable of regaining its orrizoul shape when read causing deformation is removed. This property is inportant when it th should be used for bows, carriage shafts, sports pends, wooden beans and woolen fleaci.
6. Toughness and abrasion :-

I4 should be capable of offering rescitance to stoves due to vibration and should not deteriorate due to mechanical wear.
7) sourdines 2

34 ta should have sufficient woignit on artificial timber with sufficient weight ch considered to be sound and strong.
8) Hardier if

In should have sufficient warden, i.e., resimance. penetration. When the arfficial timber is hard. 'It realists the abrasive action as for it Is used for flowing, mallets, 400 L , handles, rovers and bearing shaft.
g Kerintance to shear: :-
The artificial tuber having closely intersicked is very sarong in shear across and leven along the grams
10) simengan :-

The artificial timber should be strong enough to ta nd wheasher being applied stow sly or suddenly, It Should pomes enough strength in dimes comprouion and dreanswertse direction. ven of artificial timber :-
\rightarrow The artificial timber is conception resistant, and hence it can be used where the corienition x_{s} likely to overt in the sarvotures.
\rightarrow In En convinient in mainainance and superficial sembearity to wool.
\rightarrow In is based to make various erructural members.
\rightarrow SA Is used in maintainance work.
\rightarrow Is is also cued as a collying proofing material in buitaling consratuction.
\rightarrow or ts used to make doves and window frames.
\rightarrow Is is used for mating the planks, spectre and rewound shape for farcifure.
\rightarrow Demity can be varied in between $0.5-1.2 \mathrm{NN} / \mathrm{m}^{3}$ depend in on the requirement.
Types of arciefidial timber :-
a) veneers
b) Ply woods
c) Particle board
d) Fibre beards
e) Batten boards.
a)
veneery :-
There are thin shoes of urod, which arue oblaincyl by Slicing tanber on by palarty euting or by peeting of lop of wood now a days, rotaryy cuating in anose Cotnmon as thin fridduces voredit of lonine séze and teducen amouns of poining.
\rightarrow hewocver, mest astrocieve drecstate feurues ecturt in
 cua frem weect as kejker mofrume comonet and are drict beforte appligation rof actherive and anemblay. "Then vereosth arce pasitico together wing "hot Protaining method.
\rightarrow veneera are ured in the marvifacturte of plyudesi, each veseat being as retbht argjes to the idiacera veneer , so tinan crem sethitial. miverent con be Fermained, with athe ald of mederen hewh surength adhesiveh, veneers ares iho whed in cronutathues If, borten boord, partiche beard.
b) Plyusood :-
\rightarrow phy useds arot foemild Aggothert by furing Ahlon shect of odd numbers of verleorn. The theens arve plocent in such a wory thas, trainin of orae lagert arte at rügha argles to the ohweren =
\rightarrow hs a robuls, on appicasion ay lood on the thedex, meveriest in bohn the distebtion in rieduced. The boter pides are deurtanive in noture and ate called as face pilon and the thner onen are caud as core or cench landa.hand.
c) Partiege Board :-
\rightarrow In porticter boards, particken on chips are randrmly mired with strong adherive and are comprenned. toyeahert under high prevnure to form a boand.
\rightarrow In tartuice beard, the movement in raroliongy oriented in aus direotions and remaraina is desenclent on Stmeryith and concertration of adherive.
\rightarrow parciicle fa board is much weaker than flywind betaute, the adharive isink between the Individua chlop invate end gexim surface. propertien of Physed targely envesve depend upon wood specties wed wherte an, in parkicle wo board, it langely degends upon the adhexives and particie grapx!
\rightarrow If farcicie of boards are au cubes, the formation of. the bocurd witl revult in targe pertion of foing - Envoasing end jrains; thus producing weark boakds.
\rightarrow In sontach, eong thin chips wis overitup, rather tian budt and wiu resuls strong boards. With song and fias chips corarne. To avoid this sometiones beateds are manufactured in theut tayere.
d) Fibre -snarid :-
\rightarrow ribre boards atho calted an pecened wosols are rigied beards manufactured uing wnsol warte tifre saw dust, smasl piece of coosd, etr.
\rightarrow wool in chiffed into smas piecen "af about on mm Size, and boilet in watan. These wea farcticues aree then paused to an outocsave, wherve it in subjected to smeam prevurue of $2300 \mathrm{kN} / \mathrm{m}^{2}$ for about $1 / 2$, firute and therce after to a trenurce of $700 \mathrm{kN} / \mathrm{mt}$ for new secends.

Scanned by CamScanner
e) Batten Bearall :-
\rightarrow In au these boards, thin veneers are used on faces and are quid to care veneers may be deserted decorative or non-decorative. aram of Veneers are at right argue to shore of core.
\rightarrow In batten braseds, wore consluts of about 8 cm wide woodons strips cued an battens: if the width of stiffs Gosiod as battens is len shan 2.5 cm . Is is caused as block board. in laminated boards, widen of cree stuff rs sem than 7 mm .
\rightarrow Batten boards and brock boards are used for making partitions, patting ames, furniture panelling, coiling interior decoration; bus bodies, che. However are fable to croce or split, laminated beards are e stronger than block beards and ate not table to crack or suit.

$$
D-13-01-2020
$$

Strength of artificial timber:-
\rightarrow Artificial timber should be strong enough to withstand the loads wheather being applied slowly or suddenly. It should parers enough strength : in direction of direct compremion and Arcanversie direction.

ACOUSTIC MATEREA2 :-
Acountie in the selence of sound fincuading its i. production, sramminion and effean. hcoustie in a breaad fetd which embpares roustes radis. Sound neproducsion and. other fields.

- Projerties of acountic mouretion :-
\rightarrow Noustic material has low refleotion and hemp obsorgtion of sound.
\rightarrow 3t innaruels the sound and nothe levels from mochineary and othen souscen.
\rightarrow 9t sumpromien roviboation echber and refrosion.
\rightarrow St has caspcity to apture and absortb the sourdengy
\rightarrow it redutan the sourd energy woren.
Tiper of acouste marerdalis-
The acoustit makertial can be breadty clamifeed inho folowing 3 verugn.
a) Sपf4 matcrial :-

There hove sufficiem fortousity ard are jocol sounol

b) Semíhard maderial :-

Thene are steep enough to syand rowing wordifing can alue serve an buitding ponets. Mineral wod bsard, tane tites are fntlisded under awh casosyotry.
c) vasd materisal :-

There oure hard materifal which hove beren rode porcoun duriva manusfardure. Thay alsw serve as froiective surflaces. The forcous sitor of inomanry are commmy employed for Akis purfane. Acowtic files:-
\rightarrow MdVantages of such tires is that the absorytion of Sound As untform from silue to thie and can be earely froued to any ather surfater and they are ceray buh mat surtable of str smaven anea where lasouttiol Ameasment to be given.
\rightarrow The matectials are vailable in market unden different rode names. It th made in factary.

1) Acourtic pudp :-

D-20-01-2020
\rightarrow This is rainly compered of asbertes and collutore fibse mired with certain binderes and preserving Cheritaln.
\rightarrow Tha dry fibreus maserial, on addriton of water beromes flatric and can be aptied to whou and ceiting Surfares to a thicnes of upto 2 cm .
\rightarrow The maserial is sprofed in layers of 6 mm thekness, in the tame mamer as plautit. Being plaste it is earity shaped and frititied.
2) Fibrpus plamert:
\rightarrow This spe of raterial is allo wown as acoursic plaster. $9+$ es made by miring of cenem and granulat insolaty maserial.
\rightarrow The prepariation of cenery shoutd be property be taintained so as to becone partor mone efferive for acoustien.
\rightarrow The acoussic plaster boards ane alro used and tar be fixied on the wate. The acousic Prater shoutd have an absorbent coifficient of 0.30 al
3) Strow boared: -
\rightarrow This materiar can also be used as abracption of 0.30 an 500 cycles per second. These boards are orwitheth in 1 smm size.
\rightarrow It Es comparativer cheap, thereforce ewnmpiat.
5) Unfift a courrical plastert:-
\rightarrow This is an Enert, feather weight, granular stmatance manufactured from verviculite. Gypsum and time or fortaland cement is the other contituent.
\rightarrow water is added to the moserial to make if ptavic for applation.
\rightarrow The materifil is adapmed to every Aype of anchitectural Awhomem and xs wreal mainly for fiserior fintshes.
6) Acoustical coonds on Ailes :-
\rightarrow They are usually made of either comprewed cane or weed fibre or mineral wool.
\rightarrow These boaids and shes have undform itysical and Sound absomption characterievícs.
\rightarrow They are prefinesked at the forchory and con be Painited on colvared to give-denirable decortactive apperance anal ifyht reffection chartactorlities.
\rightarrow lese tues are very contly an compaced to othen acourricar moseritas.
7) Limper asbestos :-
\rightarrow This is asbentor fibtte which is appzied to a surface by meam of a sectial spray yun.
\rightarrow Tive asbertos fibrees ure fed to the happert af a Nachine from which they aste carreifed to a bowler. The dry fibre ef then conveged in on ain system and then pamed swough a sproy gun where if tear damp beforte the finat apprication.

CLADDING
Ciodeling fs in tape of thin an excha bager on the outside of a aribleni, It can be detached to a buisdinga franewerk so an fintermidiato lonet, If baterens ar spouexts. cladding doen rot wave to be waten pend, but of ffen tonnteds haw elerrenis hit on fau in o surfate:

94 wan ustuaty a hard subitanct tike Eedan uosed Or stene, of a marerion rosciunat io Coxachion bing crpper bram bond brensen, such merais wit reace with the everenks, but they sicil presteet whasis beneath tham

Types of cladaing cused in constuction :-

1) Slone ctading :-

Stone clagling helfe erbate o natural stane Jost. white stingeng in a fouch of sthjle and ctopanco to youis usus lertect for boan Prteriet and evieiciots, stone cladifing unes thín longeris of riaturat ch fanc 3trie to lond yourt innoe a krittiont ganthin and ciataic lut , Stone cloddiny, faneln arte edreenety basy to insals virtluatty maintaingnce frese and aracof ully ayes woth time.
\Rightarrow Nod taddínsy :It kelps creare a surning facado and is a yok ungy to fropech your home from the elementr.
 treate a wiphay distinctive character at nothiwg beats the look or reat soosch whele biendiray wets win any dncior Emolerion claddiny is individuatey
ploced and proterts the struscural intogrity of pur nowte whille atso enhancing the evteres aepranance by sovaros nothen. Enaremely durable and weynly ereryy efficions owing to ets innusation properctien, wood clowiting helps te make foun home a tranquit haver.
3) upVe cladding:-

St keips add a different dimensions to your home and requires abrolutely zero mointainance. This basicatty trambates to no time consuming pointivn or cumber nome reqairs. Soleal for both interthat and evternal waus, UPVe cladoling not only suixs every nind of wome bre also not ptone to sevene damane by wexther elemerse Besider being ecmonical, its yite easy to add insulation as weu, can be fulty custonizex and comen in o rasie of cribures.
4) Tive claololing :-

A fir faiting new ervant to the cladding worth, the
ctadiding cladding Is an exthemely versarite cladding option and comes in the form of an panes or the suited for both extortiors and intoriores of yourt wouse. Leny lasting and eary to mafinain, there can thansform your howe to a consemporarty proode. You can play with eithon sieet modeen designs or opt fors a notural terutured leek. Incredidiy dierable and ling lasting, you can even conbine thes that arte of diffarent shapes and síres to give yourt house a sewly wiruis and suave loot morecover, there tites also ach as greas insulatores thus reanding to be energy efficient as wou.

Scanned by CamScanner

7 Glan ctadding:-
St. hele transform your kutitiry evaciors and affer a. ganise of curtomizavion and serign oprion. Gtars alisaps impees and this cladoling is avallable in wide range of tempored, laminated, curved and enambed oprions while being cent effective and economitial. fuethermore, flass creates a remartably modern and Contenforaty pook white efforting onouneris froedom in Shape, derign, tomperition and size, making it oftinally surised for modern clacding application.
6) Aluminium comperte panel (ACP):-

This cladidiry sytien ts made frem bightweinht atuminium and is frequently ured for etememely enterenas vaddiroy as i'st verty rifyid and ztrong derftee its lignt wifht, moepoven, being atumitium being wesuhen and uvreseriant focitives for a bevy of chustorizarion oprions including caloares, triens, Porterns and shadiry. Availeste in varying thickees tevers; it erables quich inslatlation while arso being virsurite encoigh to be used for fackion. cancries, puusitions ind even false sofling.
7) Ceramic cladding:-

Thits solutions have boan artound feri ages and been a popular choice for architects around the wored for iscotarive furposes. Being tifntwelght, it requetres very tittle mainhinance while pasmesing a supertione teststance to chsmical and ammorperic atracks frem Popelation, atet rain and songy. 9t's Encovative desing and durabitity also faciritare preaser veriaflity in werms of she stize and arrangemenh.

Scanned by CamScanner
8) portcolain claolding :-

It Is widely ured as a mean for eruerral stradiciny heause of its exceprional properties. Suratch and abrasion eosestart with a surfoce regether than gearite on steel, Its duxabe, foryh and evtremoly stromy and dees not accumulate surface dict Addruionally its, non-forpus and imrercifous to chamical white atho being fleeeze and thermal shock resfitant which mates It the ideal material for creating cost-iffeetve, Lbw-maintainance, hard-wegring sturfaces.

$$
D-25.01-2020
$$

Micre sifica:-
\rightarrow Micro sifiea is a ifght grely comentifinus matorial cofofosed of a wast cess whe fene, anoryphous ron-cryptatine (qlany) pherifal silicon divide (fies)
\rightarrow IA Is also cated os sitita fume. It is produceot as a by-ittiduct during the manufacturing of sfificon metal or fertoxiticin allays by raducion of hizh qually quastz in a sub-merged -art eleerric furnance heated to $2000^{\circ} \mathrm{C}$ with coal, coke and wood chips an fwer.
\rightarrow The suicro stilita, which d condones froon the gares escuitng from the furmance, has very fine spherical taiticles having diameter of 0.1 mitrometer
\rightarrow Ferese silicon aury ere produceor with nominal silicor cous contents $60 \%-98 \%$. An the silicon content incroases in the aroys, the sioz content intrearex in the miero telica.

Preppertios mierts - sitien :-
\rightarrow spectite ravity of míut síca is 3.21 .
\rightarrow Its balk dernity variex ferm $200 \mathrm{ky} / \mathrm{mo}^{2}-250 \mathrm{~kg} / \mathrm{m}$ $\rightarrow 94$ nas minimum surfaci artea of $15,000 \mathrm{bm}^{2} / \mathrm{h}$ \rightarrow The untent of 5if2 En at leant 85in \rightarrow It jeves ling tertm cescotion protestion i User of Micro sifica - -

Thish materciat has very tacently fourd its appicaticn in purt country if the nutlRont.poide flanis anol breidyet crinctuction.
\rightarrow Mi(CH sisica hove then uned ertanively in a.f - sheve converte tratfricms, wigh rute mutheroried buildings and raminus onven Structiresen domandirg kiph performance in very aphlemive ervieionimental condition.

$$
D-37-01-2020
$$

Ardeficial sand :-
\rightarrow Mhyturtat sands are Noigined by the weathering actan+,
 pepending an forem ketk, action on fretfeles tize and Jrasking of nateral river sard vories from plase to 1hate.
\rightarrow Dams arte conswetueted on upt+room of rivert, ion now-a-dary yands ante not avillable on doonditieam If danx At socation, Jrajting of sard avoitabie ray rat, antain certain fresckimh shích are maquíred fort ideal "rodeng.

- strengak, durabitity of concrtete miz depends onist se, swope. qrading of fíne oypreyote since josod quaby send may not be availobly fo criushed sond ta fruduret is alno holph fn protexing ecolenicat balance, by resirictïng eue of natumat restoturces to minümum.
\rightarrow Arifgictas Sand Is a seetfic purfone rroducest matetind which usu satuft the sareorgth, durgbebity, siza, Shope, grading requírementa Af fine agreyate in canthene Thal shane menat on cruther stone waste, helou 55 mm fitom gosot farent reock Ci fed to dhatintey nasen .
Nuoperties of arsificind sand i.
\rightarrow The denity af arcteficial sond lies in betwen $18 \times+1 / \mathrm{m}^{3}-25 \mathrm{kN} / \mathrm{m}^{3}$
$\rightarrow 34$ dies not condain any prganie imparituen -
\rightarrow water abaprction in cave if ardifiefat serd Co abmant negrixtote.
\rightarrow speific gravith of artificial tand tien in berween $2.45-2.8$.
Advantages of Artificinl sand i-
\rightarrow Artifficial sand id weu yonded.
\rightarrow mír sand in hoving sumerion sartace sexture.
$\Rightarrow 51$ can be compatied Fripenty to reduce thidA.
\rightarrow Lein quaritity of coment roscrials reequïried.
$\rightarrow 9_{4}$ ean be Freoluced in requeireod yranterty and deximed quality
\rightarrow If eupimy ar larage Us conníderued, arificiat sard. many times proved to be cionaminat :

Adhesiven : -
\rightarrow Adhesion is attraction between untive surfaces. Coneril is outrucion betweon like surfaces. viuaty due to primany on spondary formes of attracion, adhesives are wied to foint two or moce parts into a unts.
\rightarrow There are adrantages of achesive booling oven methools, of arrmbly like bolting, riveting, welding ene.
\rightarrow Adhesives join the surfaces in threae loyer unys:. Stelfic odkesion if surfoces are sefined rejether by intermoseculan fontes of atritaction; methatic atherion, if the adhesive fir the voids of roreus or rougn surfaces aron and hasd the surfaces by interbecting saion, and fution of surfaces which are partirully dinowed in the adhesive on it solvent.
Advantages :-
\rightarrow Corresion may be preverted between difforent metals joined by adherives.
\rightarrow The foints betome impermearre for waten and gar.
\rightarrow Adequate sirengis is produted by using adherive.
\rightarrow The oothenive aptication proces is econsmical, eany and ipeedy.
\rightarrow Leakage problem of watirn can he thotted by the apprication of adheriver.

Dinootvantages:-
\rightarrow Adherive riquinos time to attain detirieof rarengl
\rightarrow sperfic alherive in required to be cured for sperfic subticancer -
\rightarrow holresives are unsyable at high qemperasume

1) Arimat frotein Glues:-

These Jups are obtained from hide 4rtimminy, bones and flashing by boiling tyere by hot waten trimal plues proviole stiting, tough, eatily mode joinh : bu they arte offecteat by damp and mofnt conditiom ir (os suppeied in the frem if flekes, Neants, sheets, Cates, franutes, cubes on Jetty, Animal ghes having thirbe praden deperdiry ufon the waten abdocthion. i.ie, $18,42,15$ timed the dry wefight of Fue.
une of aximal protoin gue 1-
Thes is used in the mamibcture of plywoool, laminated timber .
7) Blood Arbumin Glues:-

It ta made by drying b row blesol and afferted by damp and molst conditions. Thils ylue has geed wayen restitance prepperties and ans durouse.
Ue of blood ad albumin yruesi-
Thay have yood adhesive fropercites for pafer, tewthe and metali, hence largety used in food pockengy Leather drowing and for wood working.

Scanned by CamScanner

Starch adierives:-
\& is made frem regetables stanch having fred dry simangth buh not reninmant to emblume. Mhati tri acid mpojfers are tereol to make stance phaye "twick and racky. Thin jue has pow
 Thery are cheaper तhan animal
use of Statech adhesives:\rightarrow They are weol in aumomatic potrage trocijnes. \rightarrow Tone fress are absured in manufactuce of How therengtis and lous utatex reníntante 1 untad.
Cum arobic:-
\rightarrow These forms the mosi ukeful noturid resin Odherive -
\rightarrow sx tongoinn mirened minural sali of arebis acid, whick ís blained fition acacie trees.
\rightarrow St in luket for frivirg papon arop sood ard in high seepd forking and lovelising machine. Bonding ogent:-
\Rightarrow bonding aspenth are rateinal ermpound or syntheicic racieciat weot to enwance the jrintng of indivion mombert of a thrucremes without seing mochanical fastenern.
\rightarrow Rase produck are often une in refoireed aptiotion

Such as:- bondiny if fresh conctopu, 's fread concres, fresh movtat anof olph concriete.
\rightarrow when bending agent appied on the obd curcecte that Apine tuafate of olot concrese woer, should ber ce日n fort pruper bonoling.
Pre-fabrication:-

$$
D=28-91-2028
$$

pefinition :-
The the-fobritation bs proctiee a0 anemoly compomenth of a. Anturtare in a factory on other monifacrurting stife and inamentring complete amembly to the conitruction Stue where the structure in to bet lolotod. use if pro-fabrisation 1.
\rightarrow The mom widaly wesl form of fire-fabticarion In buititing and cive shaincorúry Cs the whe of Prep-fabtikisel cancrete ard lref-flabrcitgied bunotete Sheel tection in htructurach.
\rightarrow Pre . fabrécateol inset scection todetaces on 3 idde chating and weloting cost as wew an the aneciocte namerghal
\rightarrow Powring conctate sotions En a factory bruing the advantanyes of besing able to reswere and the Conetese tan be thergjy on the spos whinoud having to be 4romptoruest and pumper weight on a conilusted construsejom sitie.
Dísad vartayjes :-
\rightarrow cartap ius iandising of pre-fabricatool componemts suoth les toritrese farinel and sked on ylom frennd bis raquinot.
\rightarrow Ardention wor to be made me thes rnenghl and Cheresion HerChisint of the jrimeny of fobricosed Senish to avoid fatiute of the foiking.
\rightarrow stmilamby laats can be fermed an and firm-int fapräose smporients.
\rightarrow Transtorchapuen cett moy be highen for a piven rolume -
Scanned by CamScanner

The-fabruitated section are required mone volume thay "ow paterial wed î in-sinu construtaion
Principle:-
The main resura to choore pre-cast contruction teeth over tenventiral method :-
\rightarrow Economy in sore soale groject wixth high degrese of refictition of wook experuence.
\rightarrow The secial meypurment in fintaking.
canteres.
\rightarrow fast steed of comprouction.
\rightarrow tonstrainter in avoitobiling of bite resputces. (Laboter 8 magníl).
\rightarrow Large graut of buidding fran the same tripe of pre-fabricurbl etemenx.
Pre-fabrication elements:-
\rightarrow rroeing and roofing system.
\rightarrow Tre-tens suah
\rightarrow ine. cant beam
Claniffication:-

1) Sratl tre-fabrication
2) Medium per-fabrication
\Rightarrow Large fro-fabritition
4). Cast in site pre-fatrication
3) factorn fro-fabrication.
4) Cloned symem lea-fakritation.
5) ppen wyem pre-fabrication
6) Partial lae-fabrication
of Toral fres-fatrication
7) sman pre-fabrication:.
\rightarrow The fires 3 thpes ane mointy clameffed actording is thein degree of fore-cast.
\rightarrow Efina blemens wing in wheir connruction forle.g \rightarrow brick is a sman unis prelast and wed in buefleng. tifer is coured a swau fue-fannicasion (The deyree of frecast element is very law).
8) Medium The-fabritation :-

Suptre the rasfing syran and hortizental membera are frovided with pe-steeused element thase unncustron Sto kown an mediom tre-fobricated convruction. (here the y derree of The-can'element ane maderata)
3) Lange Pre-fabrication:-

In larye prue-fabrication most of the nomber like was tarict recfing or fioorting sysien beam and column are tre-forbricated. (here the degrees of pre-catt stement ate high).
4) Cast in site pree fabiciation ystie (forsery) preforitione
\rightarrow ore of the nain factor which offees the facsory ire-fobrication Es. irampora,
\rightarrow The widin of pre-fabeicated wouls ane difficuld As tramporch and vericues or meote of trampociation are the facters which frie-fatrictation is io be done on side on faclorg ane the facrers which offers ars in site froe fabrication:
5) open swem pre-fabrication $2 \cdot$
\rightarrow In the that prefabrcionion sytem in are cote carted as singte unit and enucotiod is situe.
\rightarrow The sacu fitting and other fixing are dore on side. Thare tpe of construction it mown at
sen stem fabrication.
6) Closed system prefabrication:-

In the system the whole thing are cored with firing and erected on the bastion.
7) partial Re-fabrication:-
\rightarrow In the meshed of convecuction building element (monty horizontal) are required fort pre-fabritose
\rightarrow since the costing of horizontal elements (rose), on floor) often take their fine due to erection of formworce and te en complete strength, 50 Tat building is delayed and hence thees method is restored.
\rightarrow on most of the building site $\mathrm{kz} \rightarrow \mathrm{s}$ metrool is popular.
8) Tat al fre-fabrication:-
\rightarrow very. high steed can he achieved by the wing this meshed of cemplucion.
\rightarrow This method can be employed for frat ere the of construction on for panel tope of comeuctios
\rightarrow The total pre-fabrication can be done on site or off site.
\rightarrow The evolve of this 2 metropolis depend on the situation when the factory produced elements are transported and erected at site bo cos off site prenfarticarion.
$\rightarrow 9 n$ awin methed is to be atoltod then we have a very food aramporta of fredure to site.
\rightarrow sf xwe whiseny ond cat neardy buthding site and erested the inampenatien of the element can be eltmincted buh we hove to cometert the space avaitibility for expobtin such facilities though it en temperart thed
\rightarrow The cwote of mernch of constructinn aulo depends on the fellowting :
a) Typte off equifmerx arallaute fort erection x tmanapmor
b) Tyre of Frituclutal scheme (ínear elament or porent)
c) Trife of connotition between elomesin :.

$$
D-04-02-2020
$$

Q. Write down the maserbaes twod in prue-fobrieaiton Sytiom. han- 1) conertere
2) Steet
3) Treated woarf
4) ALuminiun
5) Celindat tnackete
6) Lfyht uelyh coreiticte Element
7) Coratic fractuch..

Peefabricated maderint bulldivip we jutvarized sted and Galvatime os the chif moterepals for bufldiny - Gqalvalume Ls a foren of zheel catheol uith Oluminium zinc - This its to froter the boikding afrint torituption teus ond flee.

34 axse frovides os $14 u d y$ and Freiestive serveciny
 Components af a mesal bufidiling suoh as blamt, frames coltumas way and najeff arat mode of siset. NoAt fabricaits mibitary buildinap we steol on alumirition frames + Sqritptic fraserias are lated fir the unst and resion.

To provide enharced sewurity a combiratith of both moterial mesal and cleth materials are thed plontic flooring moterclals can be quickly Quembles and are very durable. Pruefabricated building materiats uned for small prefobricaied biudings ake steet, wood, fibce plans plastic or aluminium materiats.

There matceines are cheapen than aegulan brick and conctere buiding matarials ifike stece, fibre glass, wood and aluninum, are ured es prefabricated building maserials for sports building. There materiais provide frevibility and are parforred for makiry sructulel and accevories i i*e sands and reans for sradium and gous.
for raking low cont howres quefobriosed materials tike straw, ferro coment coniest of a coment matrix celiffreed with a merh of closely efaced Fron rods on wirmer. gn nites tyge of. conrruction the teennifues whed dre simpre and quick. using prefabricated material one can make durable, wation and firce merintanA and cheap Prefabricated buildings mort of the prerfabricated buiboling marenials are eco-frierdly and afferdable.

Advanages of prefabrication:.
\rightarrow Moving parrial arremblies from a factory often cess sen Ahan moving pre-preduction resourtees to each sire.
\rightarrow Desloping resounter \quad n-site can add corts; Thefabricationg aremblies can save carth by reefucing on- site worik.
\rightarrow factory toors - Jign, eranes, convejares, ere., Can make Produciton faster and nose precise.
\rightarrow foctory pooks - shake fables, hydrawlic tattors, elc. can offer adoled quality awsurance.
\rightarrow consisurant Endoor environments of forctories eliminate mert impacts of weathen on proofuction.
\rightarrow cranes and reusabse factory supforys can autow shapes and sequences withoul ripenive on-life fase work.
\rightarrow nighen-prectition factorcy tools can trid mone controtiod movement of busting heat and ain, fon eateriteds lowen enengy concumption and heatikien butheling.
\rightarrow Factory prooluction can faciltate moke optimat moarerials uraye, recyeting, nokre captune, dust capture ete.
\rightarrow Machine-medioted parts movement, and frexolom from wind and rain can infrove cortatuction safety.

Earthquake Resistance construction :-
Building configuration :-
\rightarrow Building configuration may be defined as the overall size and share of the building fargethen with nature and location of those element of the building that are significant to its setsmir performance.
\rightarrow Is :1893-2016 has recommended building confifuraty system in section for the better perforenance of building during earthquake.
\rightarrow To perform west in earahopuake a building shat polremes four main attributes.
a) simple and regular configuration.
b) Adequate lateral strength
c) sriffines
d) Ductility
\rightarrow Building having simple and regular geometry and uniforensy distributed mass and stiffrien in plan as wen as in elevation, suffer much lon damage than building with irrerejular configuration.
\rightarrow A building shall be consider as irregular for the purposes of this standard if adleast one of the following condition is applicable.

Definition of ireregulan building:-
Plan incequariaties :-
\rightarrow Torrional ivregularities
\rightarrow Reenveans corchers
\rightarrow out-off. plane effest in mertica
Vertical ineryputarities:-
\rightarrow stiffinen ieregularity (stoop stomey).
\rightarrow Man iverubiolty:
\rightarrow In plane jeoneticy erromulartity. laseral force .
\rightarrow Strengin irnegulartity
\rightarrow Fleating on stub column.
\rightarrow Truegular vedes of arcalation in Hevo principar Plan dircection.
Torsional Irexeqularity :-
h buisding is soid to be torcionally irceywar, when
\rightarrow the moximum harizontal drrpacemiens of any, fluar in the diecction of the lateral force at one end of the feron Is more than 1.5 times its minionum horizizenal the placement at the for end of the same flats in than dtrecetion; and
\rightarrow the natural pertiod corcerporoling to the fundarotal tortilonal made of elcillation tes merce than there of the firts swo tramsationol moles of milluation atong each frintifal plan dinection.

91 torcionally frereyular bulldirg, when the retin of mavitum horizonal dusplacomen at one end ard the minimun horizental displacemen at the athen end x.

$$
\Delta_{\text {mg }}>1+5 \Delta_{\text {nit }}
$$

(7an)

Re-entrant concrees:-
A building tos said to have a rep-entmant werer is any tan direction, when in sticuciural confliquation in plan has a repection of sizo reeaten than 15 tertan of ins oresas plan dimervion in trat diconion

In buibding with re-entreant cornoacs, thecedimervional Aynorite analyth nethed shall se adopted.
Floer slabs having exceuive cut-ous or ofenirgs:otenings in slaps result in frecible diapheogn behaviourt, and hence twe tateral thean forice of hot shated by the frames andloc verkical trembirn in porportion to theit lateral mamlazional sriffinen. The frobbem is particulanty accentuoled woren the opering is clase ts the edje of the slas. A buidolng It said to have discontinuity in thein in-pione stifffrem, when fisor slabs have cut-ouks or ofening of area mere than 50% of the fue ane of the flon llab.

In buisding wish ofscontinuity in theter in- opsor stuffrien, 踥 the area of the pometric

Scanned by CamScanner

out-of-Plane affiets in verticat Elements :-
out of -plane affrets हn vertical alaments rolisting latoral leads couse discontinotles and detoures in the locid fash, which Co known to loe detrefmentod to the earshywate safory of the building. A buthtiny Es swid to have oul-of-flane affies in vercical elements, wher structural wath of fromes arte maved aut of tiane in any storty ating the wiinth of the kuibofy.
Non- Parallas inaerel force system:-
Buitalingh uderign conptex earthapake behoviour and herce derayp, when theng do noy vove satoral forice resisting switems scienied along woo pon direction That are orthagsnal to each othert. A buitoting Es tolid to have non-parellel system when she verairatty friented Statether sythem when the veraicauy oiciented structural s-ytiems restrifing lareral forces are not. orexted alengy the twe fruncipar outhogenat, aves iry pian.

$$
A_{5}>4.1 \text { Aamal }
$$

Btering Latated Atery ory toly of the stob

- peing kecond any whom in We stab

\$0 otu. of gane offions fin rexiketitemedn)

That

3645

A saff stovery is a siomer whene inueral thiffers Th lers than that Ahe Perey atove.
2) Mas sroneqularicty:

Mans Eruseyulartity shau be considerest 10 ex Unt, when NWe solisink welisha of any floon for moree thon 150% of thou of the fieores belser.
b) vertical Geomestric ereresularith:-
itt shau be comidepereof to Cuilnt; when the norizento dimerston of the larereal fortce fresignting kywn for shy Storeng Cs mprep thon 150 F of the storesy below.
A) $9 n$; plane ofscontintulty in vertical elements kestuting caterai forise:-
an-plane disconinuity Ef vertical elements whfon are resfating lateral forte shau be comidene of to event, when in-prane offiet of the sateral force reverting elements is greater than 20% of the pan joryth of mose elements.
5) strengh ircegularity (weak morcey) ir A wenk stercey in a shovey whese tateral strengith Is len than that of the sterey above.
6) Fleating on stub copurm:-

Suck columns are bikety to caure concenireateof damorje in the sistumure.
7) Truerular modes of oscilation in Two prindipal plan nituction i-
stiffiners of beans, columm, bracen onof Mruokvial whila detormine the purerou sifffrem of a buipding ircas each printipas pian direction.
Q. Desribe different bewbling characteristices from selinde perfortugace point of veew.
$\xrightarrow{\text { NM } \rightarrow} \rightarrow$ The setismic weligh of the whole bulloling on Ave. sum of the setsmic woinhn of wur Ahe froces.
\rightarrow Any wefight supported in befween storeyp thau se dertriberted to the fleores above and belew in Enveise presporition te its dentance from the fereres.
\rightarrow For calcutaitry the derign setsmic forces of the strustume the fimponed soad on recef need not he covifiered :
\rightarrow The salssaic veipht of eachosh flooke ics th fuul dead soad flus upproprinto amouny of impored toool,
\rightarrow while senfuitry the setmic wetgnt, of eacm floor the welynt of collimm and walls th any storey shan be
equally dicitributed to the fleores above and rellow the stercey.
\rightarrow The total operign seirmic bave shean along any minciles direction shall be desermined by the following. extremion.

$$
V_{n}=A n^{\omega} \quad V_{b}=a_{h} \times w
$$

where, $a n=$ veieip horizontal aceetercation stectram value.
Q what is $w=$ setrmic weright of the building
$w=$ setsmic wer
fateros tood, werfitiny iptem?. whing- The firststep in archltecturai plangeng of a burbding है to setpet the kiteral lood kefiting syrtem. The luad serliking system mest be of eraed lieps, so that ift ha able to transfer au, the formes acting efthen vervically, \rightarrow hereizontal to the ground.
Q Enumerare safety comiderations daning adolttional comtruction and querenateon of existing bulidi"p
AM. If suffidiens Rer precoustions w.r-4. sa.fory of werch are not taken, there are ovances of serciour acitotents
\therefore Envelving heavy hoir of men and materiars. Some of the sapety rubes to be obrertyed during the

- erporion ricocens of shoucturces are as follow:-
\rightarrow Al gry and anohazajes shout be closely viened megularly so as to ascertain suefir being capacit of laod.
\rightarrow suitable packirg pieces mus be rovided at the repuired points so as to avoid the sefipirg of soad,
\rightarrow The chains should not be dropred from a nefynt.
- but should be toulered gradrally.
\rightarrow The equipment and devices employed in the erection procedure should never be over-loaded.
\rightarrow The legs of brother chains should not be opened out to such as angle so as to endanger the stability of the work.
\rightarrow The levels of panel points on the falsework should be maintained as per the desired comber for trues to avoid strain on desteration during amembly.
\rightarrow The rifting devices and mechanisms should be minnoined in perfect running order so to avoid their sudden failure without nice.
\rightarrow The tufting should be carried out smoothly withoud suoplen shocks.
D-03-03-2020

Earthquake resistance in masonery building:-
\rightarrow Masonry wats are strafer because of their small thickness compare to their height and eorgh
\rightarrow A simple way of maxing these wall behaves is well in earthquake shaking is by making then act together an a^{\prime} bore along y with the redof and the top ard with the foundation at the bottom.
\rightarrow Tit can be achieved by
a) Ensuring pod interlocking of masonry courses
b) Employing hercizental bound at various levels, particularly at the perintingel level. The size of door and window needed to be kept small.

1) Listel Band:...

During earthquake shating, the lintar band under poes berding and pwing astion. To restest these acrions, the construction of lintel band requires special axtentin. Bands can be made of wood on af reiffercos concrese (RC) . The straighs sengums of the band "must be preperly conneured at the wouls tornore Twis witl antan" Ano" bond 40 Supporh uasla loanded io thilin 0004
 dingetisn. sinous senynha of wood spocers

 borth act teycstuen sn wosofon bouch, iferton
 Onchomingy af stest tints sith stopl barts Lo nexerrorty - Linter bond is provides at the Litites lemel en au isterfol and charenol Insif as as asen as crem wash excest qarctition walla
2) Stir Band: Sil band En provided aA tiu level for al
 wej) an qoed frean wan far intograty of usaus ou concorth and purichish af wasls and effesteve herizontal bending resfita \&f bands, continuity of rieinforcomena is exontit

The band should be made of reinforced concrete If grade. not leaner than M15 on reinforced brick work in cement mortar i not leaner than 1:3.
3) plinth ponds:-
plinth band is a band provided at plinth level of wows on top of the foundation wows. This soft, of uneven in its preppertien, as it frequent hafiers in his tracks. This band wis serve as damp proof course as were.
4) Roof band:-

Roof band is a band of floors Provided immediately below the roof or flores. In buttolings with floes flat reinforced concrete on reinforced brick roofs, roof bond is not. coquireel because the rend slat also prays the cole of a bond. However, in buildings with flat timber or cor 1 sheet resp, reap band needs to be provided. In buildings with pitched on sloped roof, roup band ks very important.
5) Gable Band :-

A gable band is a horizontal member which is placed at the top of the ridge of the sloping slab to support the ends of the beef rafters and transfercering hods to posts on quale end walls.

Scanned by CamScanner

1) Lintel pand :...

During earthruake shaking, the tionte band under poss berding and fwing actimy To restest these acrions, twe corstruction of lintel band noquires spetide anention. Banda cah be made of wtod on of reisferce contrese (RC) . The strofghs-lengiks of the bund "muat be propergly conmelted at the wan sorchers. This urile alow two band to support malla Reoded in theis wark direction by wases loaded in their. Atriong dirbetin. smaut seryths of wood sfacers on steel lints arte. useol to alke the straigh. Lengtm of wosof runners on steel bares au tagater an wasolen bards, ferfer railing of straight langths with Howers Es Eemporians i Likecten, in Re bands, adegai anchoring of steel intss with steel bars Io necemarng. Lintet sord is frevided at the tintel cevol on as sterral ard everial soroprodinal as work as cron waus equert, pathition walles.
2) Stiu Band:-
silu band Es provided at sill vevei fon all internal and extersal songïndinal waus as wesl an socs crosn walls. for fuse interil of whas as concorns and punctions of waus and effertive horizontal bending reind of bands, confinuily of reinformement in enatis

The band should be made of reinforced concrete If grade, n b) leaner than M15 or reinfortepl brian work in cement mortar i not leaner than 1:3.
3) plinth Bonds:of was on top of the foundation wows. This masonry are used and the soil tether soft of uneven in its properties, as it frequent hofions in hill tracts. The's band will serve as damp proof course as well.
4) Roo band:-

Roof band is a band or-foora provide of immediately below the roof or flores. In buildings with flores flat reinforced concrete on reinforced brick roses, roy band Is not required because the col f stat also play the role of a band. However, in buildings wi th flat +Ember or cor sheet rene, roof band needs to be Provided. In building with petcheof or sloped resp, rap band is very impruati.
5) Gable Band:-

A fable band is a horizontal member which es placed out the top of the ridge of the sloping sta bo to suptict the ends of the eff rafters and transferring loads to posts or babe end walls.

Scanned by CamScanner

Ch \rightarrow O4 RETROFITTING of STRUCTURES

1) Whas are the sources of weakness in RCC framed building?
AM- source of wanness in RCC frame hillding:Earthquare engineering is net a pare escionce baske It has been developed threagh the obsersation of forluns of structure during earthquake. Damaje survey repoce of fast carinquakes revesl the following main surnts If weakness in reinporced ancrete momen cestruing frame building.
\rightarrow desconfincous load fath .
\rightarrow 10ck of defremation coniqutedixty of stumotaral Pmersibctes.

i) Stuctural pamage due to siscontinudtes sough foth :Everny steucqure mant have tuin etad ventering bytems-
a) vertion road restriting syen for tronsferuiny the verifical joog in swe pround onch
b) Merizonhas load reartiting Syntem for trowferting the horizinntal 3 and of the-verctical liad sytam.
 be 1reoforty colleves by the herizontal framing fytum and property staniforereot invo vertifol latorial rafis Sytem. Any diluconionility in thes lead path or mad tromport may cause one of the maport contributiond ty sintucturat danape durting inteiny ourthquato.
(i) structural Damage due to tack of Deformation:-
\rightarrow The main trobleons in the structural members of moment revisiting frame building eure the limited amount of ductility and the inability to redistribute lead in order to safety with sand the deformations imposed upon in resporve to seismic load.
\rightarrow The regions of failures may be in columns beams wales and beam column joints.
$\rightarrow 91$ is important to corridor the consequences for member failure of structural forformoines.
\rightarrow madequate strength and ductility of the structural member can and til thrill in local or complete failure of the system.
ti) quality of wrekabilthy and materials :-
\rightarrow There are numerates irstancon where faculty comvruction mactices and ba k of quality contred have as contributed to the damage!
\rightarrow The faculty construction practices may bo lite, lack of amount and detailing of reinforcement as per requitionenth of code particularly when the end of lateral reinforcer Is not bent by 135 ofegees an the code specified.
\rightarrow many buildings, wave been damaged due to poor. quailing unties of devin material strorgh as specified, starting of concrete by the correction of embedded reinforcing bares, porous concrete, age of thincrete, imper mointwonane etc.
2) Clanify reatrofitting rechreques and deruribe their wres.
AM:-
Retrefeiting:-
$\rightarrow 93$ th the stinteric strengthening of extsting danoges on enolimaged Eructuction. Greongth when twe exaluation of swe building
irolicition trax the suersith ts avistrbile
 revionestion atone wise rot be ackequate in fetwire quaksscath quaken. objectiveg of rearoditting :.
 divonion by reitfsecemarif on by
thu anfor st the no. of woul incroaning
 \rightarrow Giving whety to the suructuren by irovidurn

$\rightarrow \begin{aligned} & \text { Suptemental damting } \\ & \text { ard bare Ciolation }\end{aligned}$ Techiquen

Thore are 2 wayn to enhance the solsmit capocity
of erinting steuctures.

1) The firt En a swuctural - level afproon of netrofititing which tavolven grobas modifocations to the structurat synom.
2) The and is a memben hevel affroach sf resieffiting trish reatefiting which deals with an incruase of the ductility of components with areguato cafocitrea to woinfy thein spoeific shinit stake. Structural Level Gitobal Rerrofitiong:-
Adding New thean wath:-
one of the most common meahods to Encrogure the tateral stronyth itf the f.c. buildiry . It ©s the lost single resthed. initation :-
Incrusouse in lateral reniltance but it concentroted at a fest jaces.
\rightarrow sncreane deset tsad of the structures.

Aopling stoel bracing:
thigher strangith stiffiness can be proved. opering fort naruras iefht can be made earily. is bave truen ten out.
Linitation :
A moderare to high level of skiurd soover in necemary.
\rightarrow lack of infarmarion aboul the setsmic behanitu of the addeol browing.
\rightarrow underinable changer takes place.

Addeng Infiu wau:-
94. Ir an effectives espromioal metwed for immuring strengths reofucing drift of excitiong frames. Limitation :-
\rightarrow some colums in the frame are subiected ts barge axilat tonille fortcen, which may enceed the capacity.
\rightarrow A strong marmriy in fill may rescult in a faiture of the columin of extsting frome.

Local an member Rearefiting:-
Lotak reatrifiting are tyicouly ured either whan twetrefet the telrefil tbserdtives aree limited on direct troazment of the vulnenthese compononts $k x$ reedel
\rightarrow The mest molular foequently wied method in local stexrafitting is Jacketing or confinement by the jourers of t.c. steet, fibee reinforest Polymen (f cot carbon forme exp.
 to latorad lood capacity of the stexicture in a uniformly dixtribu*ed way with a minimat intreane of tranting in smg ang single fourdatinn of the buitdivg Jacketing:-
\rightarrow Jockering if the mert popwanly wed matociaes for strenghhering ef buiding.
\rightarrow The mest commen types are steel jacket, tec.. Backet, fibue reinfurieg polynon comperite jacket, Tacken with kigh temion motektass utie corchon fike.
glan fibre ex.
Purpose:-
\rightarrow To increase concrete confinemens by menverte fibre/reinforcement, expecially for circular cram-sectional columph.
To increase shear staength by transverue keinforcement.
\rightarrow Te increare flekurtal sharesph by tongitidinal finpe.

F.R.P Jacketing:
\rightarrow carbon fibre is frevible and can be made t contact the surface sightly for a high degree of confinoment.
\rightarrow confinement is of hign degree coz oucpon fibre is of hiogh taxonyth and kigh modithes of elosicity.
\rightarrow It has sight weight \& runting does not ortwere

PART-C

5.BUILDING SERVICES

Direct System of Cold Water Supply

For efficient operation. a high pressure water supply is essential porticularly at periods of peak demand. Pipework is minimal and the storoge cistern supplying the hot woter cytinder need only have 115 litres capacity. The cistern may be located within the airing cupboard or be combined with the hot water cylinder. Drinking water is available at every draw-off point and maintenance valves should be fitted to isolate each section of pipework. With every outlet supplied from the main, the possibility of bock siphonage must be considered. Back siphonage can occur when there is a high demand on the main. Negative pressure can then draw water back into the moin from a submerged inlet. e.q. a rubber tube attoched to a top or a shower fitting without a check valve focility left lying in dirty bath water.

Fotes:

(1) Servicing valves to be provided on supply pipes to storage and fushing ciaterns.
(2) Coppar tube plpe silios shown.

Fiel. The Whtor Bupply (Woler Fitings) Fiepalaliors 1999.

Indirect System of Cold Water Supply

The indirect system of cold water supply has only one drinking water outlet, at the sink. The cold water storage cistern has a minimum copacity of 230 litres. for location in the roof space. In addition to its normal supply function. it provides on odequate emergency storage in the event of water moin failure. The system requires more pipework than the direct system and is therefore more expensive to install, but aniform pressure occurs at all cistern-supplied outletsThe water autharities preier this system as it imposes less demand on the main. Also. with fewer fittings attached to the main. there is less chance of back siphonage. Other advontoges of lower pressure include less nokse and wear on fittings, and the opportunity to install a balanced pressure shower from the cistern.

Nolet:
(1) Servicing valvens to be provided on zapply pipes ta storage and flusting cinterns.
(2) Coppar lube pipe sizes shown.

Fef: The Wiver Suppy (Winur Fringer) Flegrdatons 1 gon.

For medium and high rise buildings. there is often insufficient moins pressure to supply water directly to the upper floors. Boosting by pump from a break tank is therefore usvally necessary and several more of these tanks may be required os the building rises. depending on the pump copacity. A break pressure cistern is also required on the down service to limit the head or pressure on the lower bittings to a maximum of 30 m (opprox, 300 kPol . The drinking water heoder pipe or storage vessel supplies drinking water to the upper floors. As this empties and the water reaches o predetermined low level. the pipeline switch engages the duty purnp. A floot switch in the break tank protects the pumps from dry running if there is on interruption to mains supply. The various pipe sections are fitted with isolating valves to facilitate maintenance and repairs.

As an alternative to the drinking water header pipe, an autopneumatic cylinder may be used. Compressed air in the cylinder forces water up to the floot volves and drinking water outlets on the upper floors, As the cylinder empties a low pressure switch engages the duty pump. When the pump has replenished the cytinder, a high pressure switch disengages the pump. In time. some air is absorbed by the water. As this occurs. a float switch detects the high water level in the cylinder and activates an air compressor to requitate the correct volume of air. Break pressure cisterns may be supplied either from the storage cisterns at root level or from the rising nain. A pressure reducing valve is sometimes used instead of a break pressure cistern.

The hot water from the boiler mixes directly with the woter in the cylinder. If used in a 'soft' water area the boiler must be rustproofed. This system is not suited to hard' waters. typical of those extracted from boreholes into chalk or limestone strato. When heated the calcium precipitates to line the boiler and primary pipework, eventually 'furring up' the system to render it ineffective and dangerous. The storage eylinder and associated pipework should be well insulated to reduce energy losses. If a towel rail is fitted. this may be supplied from the primary flow and return pipes.

Note. All pipe sizes shown are for copper outside diameter.

This system is used in hard water areas to prevent scaling or 'furring of the boiler and primory pipework. Unlike the direct system. woter in the boiler ond primary circuit is not drawn off through the taps. The same water circulotes continuously throughout the boiler. primary circuit and heat exchange coll inside the storage cylinder. Fresh water cannot goin access to the higher temperature oreas where precipitation of calcium would occur. The system is also used in combination with central heating, with flow and return pipes to radiators connected to the boiler. Boiler water temperature may be set by thermostat at about $80^{\circ} \mathrm{C}$.

'A sofety valve is not normally required on indirect open vent systems. as in the unlikely occurrence of the primary flow and vent becoming obstructed. water exponsion would b accommodated up the cold feed pipe.

For larger buildings a secondary circuit will be required to reduce 'deod-legs' and to maintain an effective supply of hot water at all outlets. Convection or thermo-siphonage may provide circulation, but for a more efficient service a circulatory pump will be necessary. in buildings which are occupied for onty part of the day, e.9. schools. offices. etc.i a time control or programmer can be used to regulate use of the pump. Also. one of the valves near the pump should be motorised and automatically shut off with the pump and boiler when hot water is not required. All secondary circuits should be well insulated to reduce heat lasses through the pipework. A heating installation can operate in conjunction with this system. but may require duplication of boilers or separate boilers for each function.

Indirect Supplementary Hot Water System

Hot water provision in moderately large buildings such as spacious houses. small hotels, hostels and other situations where demand is periodically high. can be from a targe storage sylinder or cylinders installed in duplicate. Alternatively or additionally, depending on requirements, a supplementary starage vessel may be strategicaliy locoted of high level. This vessel is relatively small. containing no more than 20\% of the total design capacity.

Advantages over a single storage focility:

- Smaller secondary flow and return distribution pipes.
- Less concentrated dead load on the structure.

The single stack system was developed by the Building Research Estoblishment during the 1960s, as a means of simplitying the extensive pipework previously associated with above ground drainage. The concept is to group appliances arosnd the stack with a separate branch pipe serving each. Branch pipe lengths and folls are constrained. Initiolly the system was limited to five storeys. but opplications have proved successful in high rise buildings of over 20 storeys. Bronch vent pipes ore not required unless the system is modified. Lengths and falls of waste pipes are carefully selected to prevent loss of trap water seals. Water seals on the waste traps must be 75 mm (50 mm bath and shower).

Bronch pipe slope or fall!
Sink and bath to to $90 \mathrm{~mm} / \mathrm{m}$
Basin and bidet 20 to $120 \mathrm{~mm} / \mathrm{n}$ $w C-9 \mathrm{~mm} / \mathrm{m}$.

The stock should be vertical below the highest sonitary oppliance branch if an offset is unavoidoble. there should be no connection within 750 mm of the offset.

The branch bath waste connection must be at least 200 mm below the centre of the WC branch to avoid crossflow. This may require a 50 mm nom. dia. paratlel pipe to offset the bath waste pipe, or an 's' trap WC to offset its connection.

The vent part of the stack may reduce to 75 mm nom. dio. when it is above the highest bronch:

Single Stack System - Modified

If it is impractical to sotisty all the requirements for waste pipe branches in a standard single stack system. some modification is permitted in order to maintain on acceptable system performance:

* Appliances may be fitted with resealing or anti-siphon traps (see page 309).
- Branch waste pipes can be ventifated (see pages 314 and 315).
* Larger than standord diameter waste pipes may be fitted.

All pipe sizes nominal diameter

Note: Where larger than standard branch pipes are used. the trap size remains as standard. Each trap is fitted with a 50 mm tail extension before connecting to a lorger waste pipe.

Refs: Building Regulations. Approved Document H1. Section 1s-Sanitary pipework.
B5 EN 12056: Gravity drainage systems inside buildings [in 6 ports).

The collar boss system is another modification to the standard single stack system. it was developed by the Mariey company for use with their UPVC pipe products. The callor is in effect a gallery with purpose-mode bosses for connection of waste pipes to the discharge stack without the problem of crossilow interference. This simplifies the bath woste connection and is less structurally disruptive.

Small diometer loop vent pipes on (or close to) the basin and sink trops also connect to the collar. These allow the use of ' $\$$ ' trops and vertical waste pipes without the possibility of siphonage, even when the both waste discharges and flows into the combined bath and bosin waste pipe. Vertical outlets ore also likely to be less obtrusive and less exposed than higher level 'p' trap waste pipes.

If the bronch waste pipes are kept to minimal lengths, the loop vents may not be required. Howzver. the system must be shown to periorm odequately under test without the lass of trap water seals.

All pipe sizes shown are nominal inside diameter. There may be same slight variation between different product manufocturers. particularly those using outside diameter specifications. Note that there is not olways compatibility between different manufocturers' components.

The ventilated stack system is used in buildings where close grouping of sonitary applionces occurs - typical of lavotories in commercial premises. The appliances need to be sufficiently close together and limited in number not to be individually vented.

Requirements:
WCs:
8 moximum
100 mm branch pipe 15 m maximum length
Grodient between 9 and $90 \mathrm{~mm} / \mathrm{m}$ $\left.\mathrm{f}^{0}=90 \frac{1}{2}^{\circ}-95^{\circ}\right)$

Basins:
4 maximum
50 mm pipe
4 m moximum length
Grodient between 18 and $45 \mathrm{~mm} / \mathrm{m}$ $\left(6=91^{*}-92 \frac{1}{2}\right)$.

Urinols (bowis):
5 moximum
50 mm pipe
Branch pipe as short os possible
Gradient between 18 and $90 \mathrm{~mm} / \mathrm{m}$.

Urinals (stalis):
7 maximum
65 mm pipe
Branch pipe as for bowls.

All pipe sizes are nominal inside diameter.

. 50 mmpipg

Vent pipe connected to base of steck to prevent back pressure on the ground foor applianoes

The fully vented one-pipe system is used in buildings where there are a farge number of sanitary appliances in ranges. e.g. factories. schools. offices and hospitals.

The trap on each appliance is fitted with an anti-siphon or vent pipe. This must be connected within 300 mm of the crown of the trap.

Individuat vent pipes combine in a common vent for the range. which is inclined until it meets the vertical vent stock. This vent stack may be carried to outside air or it may connect to the dischorge stack ot a point obove the spillover level of the highest appliance.

The base of the vent stack should be cannected to the discharge stack close to the bottom rest bend to relizve any compression ot this point.

Size of branch and stack vents:

Discharge pipe or stock (D) (mm]	Vent pipe $[\mathrm{mm})$
<75	0.670
$75-100$	50
>100	0.500

All pipe sizes are nominal inside diameter.

The Two-pipe System

This system was devised to comply with the old London County Council requirements for connection of soil (WC and urinal) and waste (basin, both, bidet, sink) appliances to separote stacks. For modern systems the terms soil and waste pipes are generally reploced by the preferred terminology, discharge pipes and discharge stocks.

There are many examples of the two-pipe system in use. Although relotively expensive to install. it is still permissible and may be retoined in existing buildings that are the subject of refurbishment.

It may also be used where the sonitary oppliances are widely spaced or remote and a separate woste stock is the only viable method for connecting these to the drain.

A variotion typical of 1930 s dwellings has first floor bath and basin wastes dischorging through the wall into a hopper. The waste
 stack from this and the ground floor sink waste discharge over a gully.

A gully may be used as an alternotive to a rest bend before the drain.

Ground Floor Appliances - High Rise Buildings

Lowest discharge pipe connection to stacki
Up to three storeys -450 mm min. from stock base (page 311). Up to tive storeys -750 mm min. from stock base (poge 314).

Above five storeys, the ground floor appliances should not connect into the common stack, as pressure fluctuations at the stack base could disturb the lower appliance trap water seals. Above 20 storeys, both ground and first floor appliances should not connect into the common stack. Ground and first floor appliances so affected can connect directly to a drdin or gully, or be provided with a stack specifically for lower level use.

Five to 20 storeys
Over 20 storeys

Access - required for clearing blockages. Rodding points should be fitted at the end of discharge pipes. unless trap removol provides occess to the fuX pipe fength. Discharge stacks are occessed from the top and through access plotes located midway between floors at a moximum spocing of three storeys apart.

Armoured cable is used for mains and sub-mains. The cable is Iaid below ground level, breaking the surface where it enters sub-stations or transformers and other buildings. High voltage coble is protected below ground by precast concrate 'tiles:

Arnownd trean-ikean for mis ciels for loving telow prand loner

Conduit for electrical services is produced in steel (galvanised or painted black) or plastic tube into which insulated cables are drown. The conduit protects the cable from physical damaqe and heat. It also provides continuous support and if it is metal. it may be used as an earth conductor, Standard outside diameters are 20. 25. 32 and 40 mm . Steel is produced in either light or heavy gauge. Light gauge is connected by grip fittings. whilst the thicker walled heavy gauge can be screw threaded to fittings and couplings. Plastic conduit has push-fit connections.

(1) Ehow

Ftings ler staal condut

Refs: BS 6346: Electric cables, PVC insulated, ormoured cobles for voltages of $600 / 1000 \mathrm{~V}$ and $1900 / 3300 \mathrm{~V}$.
BS EN 61386: Conduit systems for coble monagement. BS 7846 : Electric cables. $600 / 1000 \mathrm{~V}$ armoured fire resistant cabtes having thermosetting insulation and low emission of smoke and gases when affected by fire.

Mineral insulated copper covered cable (MICC] has copper conductors insulated with highly compressed magnesium oxide powder inside a copper tube. When installing the coble, it is essential that the hygroscopic insulant does not come into contact with a damp otmosphere. Cutting the coble involves special procedures which ore used to seal the insulant from penetration of atmospheric dampness. The cable provides an excellent earth conductor: it is also resistant to most carrosive atmospheres and is unaffected by extremes of heat.

Secton of termination joint for mineal imutated sopper covored cable (MCC)

Foup decearing pot
Exploded view of bermination joint lor mineral insuared copper covernt catie

PVC and rubber insulated cables are relativaly inexpensive and simple to install, requiring clipped support at regutar intervals. PVC cables are in general use, but they have a temperature timitation between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Below zero they become brittle and are easily damaged and at the higher temperature they become soft. which could encourage the conductor to migrate through the PVC. Outside of these temperatures. the cable must be protected or on appropriate rubber insulant specified. Cables usually contain one. two or three conductors. In three-core coble the tive and neutral ore insulated with brown and blue colour coding respectively. The earth is bare and must be protected with green ond yellow sleeving where exposed ot junction boxes. sockets. etc. Grey and black insulated conductors are accasionally used where an additional facility is required, e.g. two-way lighting.

Refs $\mathrm{B5} \mathbf{5 0 0 4}$ Electric cables. PVC insulated non-armoured cobles for voltages up to and including $450 / 750 \mathrm{~V}$. for electric power, lighting and internal wiring.
B5 6007: Electric cables. Single core unsheathed heat resisting cables for voltages up to ond including $450 / 750 \mathrm{~V}$. for internal wiring.

Testing Completed Installation - 1

Electrical instaltations must be tested on completion to verify that the system will operate efficiently and safely. The tests are extensive, as defined in the Institution of Electrical Engineers Regulations. They can only be carried out by a competent person. i.e. a quolified electrician or electricat engineer. The following tests are on essential part of the proceedings:

- Continuity.
- Insulation.
- Polarity.

Testing is undertaken by visual inspection and the use of a muttipurpose meter (multimeter) or an instrument specifically for recording resistonce, i.e. an ohmmeter.

Continuity - there are several types of continuity test for ring mains. Each is to ensure integrity of the tive. neutral ond earth conductors without bridging (shorting out) of connections. The following is one established test to be applied to each conductor:

* Record the resistance between the ends of the ring circuit (A).
* Record the resistance between clased ends of the circuit and a point mid-way in the circuit (B).
* Check the resistance of the test tead (C).
* Circuit integrity is indicated by: $\mathrm{A}-4$ opprox. $=\mathrm{B}=\mathrm{C}$.

Resistance between ends of circuit

Pesistance from end to mid-point

Test lead resistance

Insulation - this test is to ensure that there is a high resistance between live and neutral conductors and these conductors and earth. A low resistance will result in current leakage and energy waste which could deteriorate the insulation and be a potential fire hozard. The test to earth requires oll lamps and other equipment to be disconnected. all switches and circuit breakers closed and fuses lett in. Ohmmeter readings should be of least I M Ω

Polarity - this is to ensure that all switches and circuit breakers are connected in the phose or live conductor. An inadvertant connection of switchgear to a neutrol conductor would lead to a very dangerous situation where opparent isolation of equipment would still leave it livel The test leads connect the live bar in the disconnected consumer unit to tive terminats ot switches. A very low resistance reading indicates the polarity is correct and operation of the switches will give a fluctuation on the ohmmeter.

Pedarliy lest

Ref: BS EN 61010-1. Safety requirements for electrical equipment for measurement. control and laboratory use.

For large developments containing several buildings, either radial or ring distribution systems may be used.

Radial system - separate underground cables are laid from the substation to each building. The system uses more coble than the ring system. but only one fused switch is required below the distribution boards in each building.

Ring circuit system - an underground cable is laid from the substation to loop in to eoch buiding. To isolate the supply. two fused switches ore required below the distribution boards in each building. Current flows in both directions from the intake. to provide a better balance than the radial system. If the cable on the ring is damaged ot any point. it can be isolated for repair without loss of supply to any of the buildings.

Earthing Systems - 1

Supply systems require a sofety electrical earthing facility. The manner in which this is effected will depend on whether the supply is overhead or underground and the conductive property of the ground surrounding the installation. Systems are classified in accordance with o letter coding:

First letter - type of earthing:
T = at least one point of the supply is directly earthed.
I - the supply is not directly earthed. but connected to earth through a current limiting impedance. Not acceptable for public supplies in the UK.

Second letter - installation earthing arrangement:
T = all exposed conductive metalwork is directly earthed.
N - all exposed conductive metalwork is connected to an earth provided by the supply company.

Third and fourth letters - earth conductor arrangementr
5 - earth and neutral conductors separate.
C - earth and neutral conductors combined.
Common supply and earthing orrangements are:
TT (shown below).
TN-S and TN-C-S (shown next page).

TT system:
Most used in rural areas where the supply is overhead. An earth terminal and electrode is provided on site by the consumer. As an extra sofety feature. a residuol current device (RCD). generally known os a trip switch. is located between the meter and consumir unit. The RCD in this situation should be of the time deloyed type - see poge 398.

TN.S system - this is widely used in the UK. with the electricity supply company providing an earth terminal with the intake cable. This is usually the metal sheathing around the cable. otherwise known as the supply protective conductor. It connects bock to the stor point at the orea transformer, where it is effectively earthed.

TN.C-S system - this is as the TN.S system. but a common conductor is used for neutral and earth supply. The supply is therefore TN.C. but with a separated neutral and earth in the consumer's instalfotion it becomes TN.C.S. This system is also known as protective multiple earth (PME). The advantage is that a foult to earth is olso a tault to neutral. which creates o high foult current. This will operate the overlood protection [fuse or circuit breaker] rapidly.

Fuses or mehs

TN-S system
TN-C-S systom

Note: Specification of installation cable between supply companys sealing chamber and consumer's unit - phase/live and neutral $25 \mathrm{~mm}^{2}$, earth $10 \mathrm{~mm}^{2}$ cross-sectional area.

Pages 380. 381 and 385 show that the consumer's eorth conductor is connected to the neutral and earthed of the local transformer. For below ground supplies this arrangement provides a path of low resistance for an electrical foult. With an overhead supply typical of rural oreas. individual consumers must provide a suitable earth terminal or electrode as shown on page 384.

Uniess wet. the ground surface is not usually a very good conductor, therefore ground contact is made at about 1.5 to 2 m below the surlace. In the past this was achieved by earth bonding to metal water and gas moins. Since the introduction of plastic pipe materials. this is of course no longer occeptable. Current proctices include burying a metal plate or a metal tope mesh arranged over several square metres. or driving a metal rod electrode into the ground. The latter is normally odequate for domestic and other small-scale installations. In some instances. the electrade is housed as shown below. Whotever earth method used. a low resistance to on electrical foult is essential. The IEE Wiring Requiations recommend that the earth electrode resistance should not exceed 200 ohms.

The Institution of Electrical Engineers (IEE) Wiring Regulations require the metal sheaths and armour of all cobles operating at low and medium voltage to be cross-bonded to ensure the same potential as the electrical installation. This includes all metol trunking and ducts for the conveyance ond support of electrical services and any other bare earth continuity conductors and metalwork used in conjunction with electrical appliances. The bonding of the services shall be as close as possible to the point of entry of the services into a building. Other fixed metalwork shall be supplementary earth bonded.

Light and Light Sources - 1

Light is a form of electromagnetic rodiation. It is similar in nature and behoviour to radio waves at one end of the frequency spectrum and X-roys at the other. Light is reflected from a polished (specular) surface at the same angle thot strikes it. A mott surface reflects in a number of directions and a semi-mott surface responds somewhere between a polished and a matt surface.

Avpe at ixidenee θ_{1} Angle ef refletioion B_{2}

Lient rettreted from a pallighed surface

Lidt it scarmend in alt dirmetiena fodthuian

Leght passing through a ciflusing wereen

Lightiomfersed in al diesetions

Light reflected from a matt surface

Light is bent or riflucted when pealing though a wrfacr betweth twe mada

Some Fiflly vaturred waf some light in millected ofantionally

Light weastered and reflocted from a aemi-matt surface

Intensity of light and lux

Illumination produced from a light source perpendiculor to the surface:

$$
E=1+d^{2}
$$

$E=$ illumination on surfoce (lux)
$1=$ IIfumination intensity from source (cd)
$d=$ distance from light source to surface $[\mathrm{m}]$ -

Definitions and units of measurement:

- Luminous intensity - candela (cd). a measurement of the magnitude of fuminance or light reflected from a surface. i.e. $\mathrm{cd} / \mathrm{m}^{2}$.
- Luminous flux - tumen (lm). a meosurement of the visible light energy emitted.
* Hiuminonce - Lumens per square metre fim/m²) or (ux (ix), a measure of the tight falling on a surface.
* Efficacy - efficiency of lamps in lumens per watt (lm/W). Luminous efficocy = Luminous flux output + Electrical power input.
- Glore index - a numerical comparison ranging from about 10 for shoded light to about 30 for an exposed lamp. Colculated by considering the light source size. location. Iuminances and effect of its surroundings.

Examples of illumination levels and limiting glare indices for different activities:

Activity/location	Hiluminance [lux]	Limiting glare index
Assembly work: (generat)	250	25
(fine)	1000	22
Computer room	300	16
House	50 to 300^{*}	n/o
Laboratory	500	16
Lecture/classroom	300	16
Olfices: (generol)	500	19
(drawing]	750	16
Public house bar	150	22
Shops/supermarkets	500	22
Restouront	100	22

* Varies from 50 in bedrooms to 300 in kitchen and study.

The Building Requiations. Approved Document L2 requires that nondomestic buildings have reasonably elficient lighting systems and make use of daylight where appropriate.

Ventilation - a means of chonging the oir in an enclosed spoce to:

* Provide fresh air for respiration - approx. 0.1 to $0.2 \mathrm{l} / \mathrm{s}$ per person.
* Preserve the correct level of oxygen in the air - approx. 21\%.
* Control carbon dioxide content to no more than 0.1\%. Concentrotions above 2% are unacceptable as carbon dioxide is poisonous to humans and con be total.
* Control moisture - relative humidity of 30% to 70% is acceptable.
- Remove excess heat from machinery, people. tighting. etc.
* Dispose of odours. smoke. dust and other atmospheric contaminants.
* Relieve stagnation and provide a sense of freshness - air movement of 0.15 to $0.5 \mathrm{~m} / \mathrm{s}$ is adequote.

Measures for control:

Health and Safety ot Work. etc. Act.
The Factories Act.
Offices. Shops and Railway Premises Act,
Building Regulations. Approved Document F - Ventilation. B5 5925: Code of practice for ventilation principles and designing for notur al ventilation.

The statutes provide the Hzalth and Salety Executive with authority to ensure buildings have suitably controlied internal environments. The Building Requiations and the British Standord provide measures for application.

Requirements for an acceptable amount of fresh air supply in buildings will vary depending on the nature of occupation and activity. As a quide, between $10 \mathrm{l} / \mathrm{s}$ of outdoar air supply per person can be opplied between the extremes of a non-smoking environment. to an extract air rate of $36 \mathrm{l} / \mathrm{s}$ per person in a room dedicated specifically for smokers. Converting this to $\mathrm{m}^{3} / \mathrm{h}$ (divide by 1000 , multiply by 3600), equates to 36 to $130 \mathrm{~m}^{2} / \mathrm{h}$ per person.

Air changes per hour or ventilation rote is the preferred criterio for system design. This is calculated by dividing the quantity al air by the room volume and multiplying by the occupancy.
E.g. $50 \mathrm{~m}^{3} / \mathrm{h} .100 \mathrm{~m}^{3}$ office for tive persons: $50 / 100 \times 5=2.5 \mathrm{o} / \mathrm{c}$ per h .

Natural ventilation is on economic means of providing air changes in a building. It uses components integrat with construction such as air bricks and louvres; or openable windows. The sources for notural ventilation are wind effect/pressure and stack effect/pressure.
stack effect is an application of convected air currents. Cool air is encouraged to enter a building at low level. Here it is warmed by the occupancy, tighting, machinery and/or purpasely located heat emitters. A column of warm air rises within the building to discharge through vents at high level as shown on the following page. This can be very effective in tall office-type buildings and shopping malls. but has limited effect during the summer months due to warm external temperatures. A temperature differential of at least 10 K is needed to effect movement of air. therefore a supplementary system of mechanical air movement should be considered for use during the warmer seasons.

Wind pressure diegram lor nocls with gactes up to 30'

The rates of air change are determined by the building purpose and occupancy, and locat interpretation of public health legistotion. Public buildings usuatly require a ventitotion rate of $30 \mathrm{~m}^{3}$ per person per hour.

Wind passing the walls of a building creates a slight vacuum. With provision of controlled openings this can be used to draw oir from a room to effect air changes. In tall buildings, during the winter months. the cool more dense outside air will tend to displace the warmer lighter inside air through windows or louvres on the upper floors. This is known as stack effect. It must be requioted otherwise it can produce droughts at low levels and excessive warmth on the upper floors.

Ventilation and heating for an assembly hall or similar building may be achieved by admitting cool external air through low level convectors. The warmed air rises to high level extract ducts. The cool air intake is regulated through dompers integral with the convectors.

PSV consists of vertical or near vertical ducts of 100 to 150 mm diameter, extending from grilles set ot ceiling level to terminals above the fidge of a roof. Systems con be applied to kitchens. bothrooms. utility rooms and sometimes sanitory occommodation in buildings up to four storeys requiring up to three stocks/ducts. More complex situations are better ventilated by a Mechonical Assisted Ventilation System (MAVS). see next page.
PSV is energy efficient and environmentally friendly with no running costs. It works by combining stack effect with air movement and wind passing over the rool. It is self-regulating, responding to a temperature differential when internal and external temperatures vory.

PSV to a dwelling house

Ret: Building Regulations. Approved Document F1.

MAVS may be applied to dwellings and commercial premises where PSV is considered inadequate ar impractical. This may be because the number of individual ducts would be excessive, i.e. too space consuming and obtrusive with several roof terminals. A law powered (40 W) silent running fon is normally located within the roof structure. It runs continuously and may be boosted by manual control when the level af cooking or bathing activity increases. Humidity sensors can also be used to automatically increase air flow.

MAVS are acceptabie to Approved Document F1 of the Building Regulations as an olternative to the use of mechanical fans in each room. However, both PSV and MAVS are subject to the spread of fire regulations (Approved Document B). Ducting passing through a fire resistant wall. floor or ceiling must be fire protected with fire resistant materiols and be fitted with a fusible link automatic damper.

MAVS in a group of flata

MVHR is a development of MAVS to include energy recovery from the warmth in fan extracted moist air from bathrooms and kitchens. The heat recovery unit contains on extract fan for the stale air. a fresh air supply fan and a heat exchanger. This provides a balanced continuous ventitation system. obviating the need for ventilation openings such as trickle ventilators. Aport from notural leakage through the building and air movement Irom people opening and closing externol doors. the buitding is sealed to moximise energy efficiency. Up to 70% of the heat energy in staie cir can be recovered, but this system is not an ofternative to centrat heating. A spoce heating system is required and MVHR can be expected to contribute significantly to its econamic use. MVHR complies with the "olternative approoches" to ventilation of dwellings. as delined in Approved Document F1 to the Building Requlations.

[^0]
Mechanical Ventilation - 1

Mechanical ventilation systems are frequently applied to commerciat buildings. workshops, factories, etc., where the air change requirements ore defined for health and welfare provision. There are three cotegories of system:

1. Natural inlet and mechanical extract
2. Mechanical inlet and notural extract
3. Mechanical inlet and mechanical extract

The copital cost of installing mechanical systems is greater than notural systems of cir movement. but whether using one or more fons, system design provides for more reliable air change and air movement. Some noise will be opporent from the fan and air turbulence in ducting. This can be reduced by fitting sound attenuators and splitters as shown on page 174. Page 180 provides quidance on acceptable noise levels.
Internal sanitory accommodation must be provided with a shunt duct to prevent smoke or smells passing between rooms. In public buildings. duplicated fans with automotic changeover are also required in event of failure of the duty fon.

Indernal santiary accoamodation

Basement car parks require ot least 6 air changes per hour and at exits and ramps where queuing occurs. local ventifation of at least 10 air changes per hour. Duplicate fons should be provided with a fon failure automatic change over.

Fan ossisted ventilation systems supplying externat air to hobitoble rooms must hove a facility to pre-heot the oir. They must olso have control over the amount of air extracted, otherwise there will be excessive heat loss. A mechanicat inlet and mechanical extract system con be used ta regulote and balance supply and emission of air by designing the duct size and fon rating specifically for the situation.
Air may be extracted through specially made light tittings. These permit the heat enhanced air to be recirculated back to the heating unit. This not only provides a simple form of energy recovery, but also improves the light output by obout 10%. With any form of recirculated air ventilation system. the ratio of fresh to recirculated air should be at least 1/3. i.e. min. 25\%. Iresh, max. 75\%, recirculated. In large buildings where smoking is not permitted, such as a theatre. a downward air distribution system moy be used. This provides a uniform supply of warm fittered oir.
Ductwork in oll systems should be insulated to prevent heat losses from processed air and to prevent surfoce condensation.

[^1]When designing ventilation systems. provision must be made for the displacement of heat energy resulting from the movement of air. This is necessary for maintenance of the building or room ambient temperature Also. to prevent cold droughts and condensation.
Cold supply air is pre-heated to discharge at the same temperature as the design air temperature for the room served. This will have no real effect on any separate heating system and can be regulated independently by a control thermostat. The following formula can be used to establish the ducted oir heoter rating in kW . relative to design temperature porometers

```
Heater roting \(=m \times\) she \(\times\) Temp. diff. (int. - ext.)
    Where:
    \(\begin{aligned} m & =\text { mass air flow rate }(\mathrm{kg} / \mathrm{s}) \\ \text { She } & =\text { Specific heat capocity of air }[10 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}]\end{aligned}\)
    Temp. diff. = Temperature difterentiol between internal room
                                    air and external supply air (K)
```

Air flow rate by volume $|O|$ is calculated in $\mathrm{m}^{3} / \mathrm{s}$. To convert this to mass air flow rate in kg / s. the volume rate is multiplied by air density (P) of $1-2 \mathrm{~kg} / \mathrm{m}^{3}$.
Therefore:
Heater rating $=0 \times \rho \times$ Shc \times Temp. diff. (int. - ext.)
For example. a room with total fobric and infittration heat lasses of 3 kW (see method of calculation on page 125). with air supply and temperature design factors as given below:

$$
\begin{aligned}
\text { Heater roting } & =0.4 \times 1.2 \times 1-0 \times(22--4) \\
& =12.48 \mathrm{~kW}
\end{aligned}
$$

Air duct heeter celculation
Thcrefore if the ducted air is required to supply all heating needs. then 12.48 kW is odded to the room losses of 3 kW . bringing the total heat input to 1548 kW . If the ducted air system is to provide for the design room heat loss of 3 kW . the discharge air temperature (T) can be found by rewriting the formula:

Room heat losses $=\mathbf{Q} \times \rho \times$ She $\times(T-$ int. air temp. $)$
Or: $T=[$ Room heat losses $+[0 \times \rho \times$ Shc $]]+22$

$$
T=[3-[0.4 \times 1-2 \times 1.0]]+22=28-25^{\circ} \mathrm{C}
$$

Roping Systems for Electric Lifts - 1

High tensile steel ropes are used to suspend lift cars. They have a design factor of safety of 10 and are usually of least four in number. Ropes travel over grooved driving or traction sheoves and pulleys. A counterweight balances the load on the electric motor and traction gear.

Methods for roping vary:

Single wrop 14 - the most economical and efficient of roping systems but is limited in use to smalt copocity cors.

Single wrap 11 with diverter pulley - required for larger capacity cars. It diverts the counterweight away from the cor. To prevent rope slip. the sheave and pulley may be double wrapped.

Single wrap 21 - an olternative for use with larger cars. This system doubles the lood corrying copocity of the machinery but requires more rope and also reduces the car speed by 50\%.

Double wrap = used to improve troction between the counterweight. driving sheave and steel ropes.

Singla wrip $1: 1$ roped

Single wamp 2: 1 roped

Single wrap 1 :1 roped with diverter poley

Double wrap 2 : 1 roped jlor high apeod and medurn to heavy ditr loids!

Single wrap 3:1 - used for heavy goods litis where it is necessory to reduce the force octing upon the machinery bearings and counterweight. The load carrying capacity is increased by up to three times that of uniform rotio, but the copital costs are higher with increased pulleys and greater length of rope. By comparison. the car speed is olso reduced to one-third.

Drum drive - a system with one set of ropes wound clockwise around the drum and another set anti-clockwise. It is equaily balanced, as one set unwinds the other winds. The disadvantoge of the drum drive is that as height increases. the drum becomes less controllable. limiting its opplication to rises of obout 30 m .

Compensating rope and pulley - used in tall buildings where the weight of the ropes in suspension will cause an imbatance on the driving gear and also a passible bouncing effect on the car. The compensating ropes attach to the underside of car and counterweight to pass around a large compensating pulley at low level.

Drimdive

Single wrap $1 ; 1$ roped witi machine room bevis mont lovel. The lingta of tope is incressod which in ct the travel and spovd et ear

The single automatic push button system is the simplest and least sophisticated of controls. The lift car con be called and used by onty one person or group of people ot a time. When the lift car is called to a floor, the signal lights engraved in use' are illuminated on every floor. The car will not respond to any subsequent landing calls, nor will these calls be recorded and stored. The car is under complete control of the occupants until they reach the required floor and have departed the lift. The 'in use' indicator is now switched off and the car is availoble to respond to the next tonding call. Although the control system is simple and inexpensive by comparison with other systems. it has its limitations for user convenience. It is most suited to light traffic conditions in low rise buildings such as nursing homes. smatt hospitals and flats.
 Lt ean row be calied by other passonger

Ref. B5 5655-7: Lifts and service lifts. Specification for mancal contral devices. indicators and additional fittings.

Down collective - stores calls made by passengers in the cor and those made from the landings. As the car descends. landing calls are onswered in floor sequence to optimise car movement. If the cor is moving upwords. the lift responds to colls made inside the car in floor sequence. After sotisfying the highest registered call. the cor outomatically dascends to answer all the landing calls in floor sequence. Ony one call button is provided at landings. This system is most suited to flats and small hotels. where the traffic is mainly

While trweilling upwerde all the landing cally are by-pamed
to trvel upvarts

When the car moves dowen all lavelling calh were sall ected floor hy foor
between the entrance lobby and specific floors.

Full or directional collective - a variation in which car and Ianding calls are immediately stored in any number. Upward and downward intermediate londing colls ore registered from one of two directional buttons. The uppermost and lowest floors only require one button. The lift responds to calls in floor order independent of call sequence. first in one direction and then the other. It has greater flexibility than the down collective system and is oppropriote for offices and departmant stores where there is more movement between intermediate floors.

Paternoster Lifts

A paternoster consists of a series of open fronted two-person cars suspended from hoisting chains. Chains run over sprocket wheels at the top and bottom of the lift shaft. The lift is continuousty moving and provides for both upward and downward transportation of people in one shaft. Passengers enter or leave the cor while it is moving therefore waiting time is minimal. Passengers will have to be fairly agite. which limits this type of installation to factories. offices. universities, etc. It is not suitable in buildings that accommodate the infirm or elderly! When a sar reaches its limit of travel in one direction. it moves ocross to the odjacent set of hoisting chains to engage with cor guides and travel in the other direction. In the interests of sotety. cor speed must not exceed $0.4 \mathrm{~m} / \mathrm{s}$.

View of inscallation

Paternosters convey about 600 persons per hour. This type of lift has the advantage of allowing passengers to begin their journeys undelayed, regardiess of traval direction. Simplicity of control gear adds to the advantages, resulting in lewer breakdownis by eliminating normal processes of stopping. starting, acceleratint and decelerating. They are most suited to medium-rise buildings.

Direct octing - the simplest and most effective method. but it requires o borehole below the pit to accommodate the hydroulic ram. The ram may be one piece or telescopic. In the absence of a counterweight. the shaft width is minimised. This will save considerably on construction costs and leave more space for general use.
Side acting - the ram is connected to the side of the car. For large copacity cars and heavy goods lifts. two rams may be required. one eoch side of the cor. A borehole is not necessary, but due to the contilever design and eccentric looding of a single ram orrangement. there are limitations on car size and lood capacity.
Direct side acting - the car is cantilevered and suspended by a steet rope. As with side octing. limitations of contilever designs restrict car size and paylood. Car speed may be increased.
Indirect side acting - the car is centrally suspended by a steep rope and the hydrautic system is inverted.

Direct acting - the simplest ond most effective method, but it requires a borehole below the pit to accommodate the hydrautic ram. The ram may be one piece or telescopic. In the obsence of a counterveight. the shaft width is minimised. This will save considerobly on construction costs and leave more spoce for general use.
Side acting - the ram is connected to the side of the car. For large copocity cars and heavy goods lifts. two rams may be required, one each side of the car. A borehole is not necessary, but due to the cantilever design and eccentric loading of a single ram orrangement. there are limitations on cor size and lood copocity.
Direct side acting - the cor is contitevered and suspended by a steel rope. As with side octing. limitations of cantilever designs restrict car size and payload. Cor speed may be increased.
Indirect side acting - the cor is centrally suspended by a steep rope and the hydrautic system is inverted.

Feltect wibe enay

Originally, hydroulic lifts used mains water supply as the operoting medium. The moin was pressurised from a central pumping station to service lift instaltations in several buildings. The oilhydroulic system hos oil pressure led by a pump into a cylinder to raise the ram and lift car. Each ilt has its own pumping unit and controller. These units are usuolly sited ot or frear to the lowest level served. no more thon 10 m from the shait. The lift is ideal in lower rise buildings where moderate speed and smooth acceleration is preferred. Cor speed ranges from 0.1 to $1 \mathrm{~m} / \mathrm{s}$ and the maximum travel is timited to about 21 m . The lift is porticularly suitable for goods lifts and for hospitals and old people's homes. Most hydraulic lifts carry the lood directly to the qround, therefore as the shaft does not bear the loads. construction is less expensive than for a comparable electric lift installation.

Wertai saction

nan

BS 5655-10'2 provides specific quidance for the testing and examination of hydraulic lifts.
See also BS EN B1-2 for solety rules applied to constructing and instalting hydroutic lifts.

Upward movement - the oil pressure must be gradually increosed. The up solenoid valve is energised by an electric current and opens to allow oil to enter above piston D. As the areo of piston D is greater than valve C. the oil pressure closes the volve and allows high pressure oil to flow to the cytinder and lift the ram and the cor.
Downword movement - the oil pressure must be gradually decreased. The lowering solenoid valve is energised by an electric current and opens atlowing oil to flow back to the tank through the by-pass. As the area of piston A is greater than valve B. the reduced ail pressure behind the piston ollows valve B to open. Oil flows into the tank and the car moves downwards.
A special packing gland with several seals is required between the cylinder and ram.

Cil tank, punp and coritrola

[^2]Escolators are moving stairs used to convey people between floor Ievels. They ore usually arranged in pairs for opposing directional travel to transport up to 12000 persons per hour between them.

The moximum carrying capacity depends on the step width and conveyar specd. Standard steps widths are 600,800 and 1000 mm . with speeds of 0.5 and $0.65 \mathrm{~m} / \mathrm{s}$. Control gear is less complex than that required for lifts as the motor runs continuously with less load variations. In high rise buildings space for an escalator is unjustified for the full height and the high speed of nodern lifts provides for a better service.

To prevent the exposed openings facilitating fire spread. a woter sprinkler instaltation (see Part 12) can be used to automatically produce a curtain of water over the well. An atternative is a fireproof shutter actuated from a smoke detector or fusible links.

Freprool diding sthutier

Escalator Arrangements and Capacity

Escalator configurations vary depending on the required level of service. The one-directional single bank avoids interruption of traffic. but occupies more floor space than other arrangements.
A criss-cross or cross-over orrangement is used for moving traffic in both directions.

Escalator capacity formula to estimate the number of persons (N) moved per hour:

$$
N=\frac{3600 \times P \times V \times \text { cosine } 0}{L}
$$

wherei $P=$ number of persons per step
$V=$ speed of travel $(\mathrm{m} / \mathrm{s})$
$0=$ angle of incline
$L=$ length of each step (m).
E.g. on escalator inclined of 35°, operating with one person per 400 mm step at $0.65 \mathrm{~m} / \mathrm{s}$.

$$
N=\frac{3600 \times 1 \times 0.65 \times 0.8192}{0.4}=4792 \text { persons per hour }
$$

Trovelatars - also known as autowalks. passenger conveyors and moving pavements. They provide horizontal canveyance for people. prams. luggage trolleys. wheelchairs and amall vehicles for distances up to about 300 metres. Slight inclines of up to 12^{*} are also passible. with some as great as 16°, but these steeper pitches are not recommended for use with wheeled transport.

Applications range from retail, commercial and store environments to exhibition centres. rollway and airport terminats. Speeds rangz between 0.6 and $1.3 \mathrm{~m} / \mathrm{s}$. any faster would prove difficult for entry and exit. When added to walking pace, the overall speed is about $2.5 \mathrm{~m} / \mathrm{s}$.

There have been a number of experiments with different materials for the conveyor surfoce. These have ronged from elostics. rubbers. composites. interioced steel ptates and trellised staet. The letter two have been the most successfut in deviating from a stroight line. but research continues. particularly into possibilities for variable speed lanes of up to $5 \mathrm{~m} / \mathrm{s}$. However. there could be a donger if bunching were to occur of the exit point.

Capacily 6500 to 10800 porsons por hour
Typical inclined trevelator

6.Construction and earth moving equipments

PART-D

6.Construction and Earth moving equipments

INTRODUCTIOA

- Construction aquiparats ire one of the very impartant respurte of modern-doy conatrution. -specially in infrastrustore projects.
- In much projects equipments are ased fir moun af the worka inclading earth moving operaton. ageregate produation, ospcrete production and ite placemeat etc. In fact, we connot think of any major cosstruction activisy wishout the involiement of cesstrvition equipment.
- Thene are types of construetion equipnente evitable for different setivities in a consiruction project.
- The atiection of contruction oquipment definge the sonatrwation method, which in a way leode to the fetermisation of time and cost for Use propet.
- Foc achetieg she rigbt equipment to peoform in speedfic tash at the leant cond, it is easential to know the fatures of a coastruction equipnent including ite rate of production and the anaciated eopt to optrate the equipaient.
- While dealing with the construction siage, selection of the most suitable equigement is a very

* A contracter may eok afford to have all toper or sixes of equapment which are rempired for execution of the prajecta
- Cheice is made after cwniblerint many facters hife siatare of the preject, ewat of equipnami. depresiation. ponaininy of ite future uses on other projectes, ite resale value afler cerlain period, the soving copocted frum the uae of sich equipesente etc.

MASSIFCATION OFCOMSTRUCTONESQUPMENTE

Construttion equermants eas be claesified into masy ways.

1. Basis of function of equifuent - kir example, material loadiag farcties, material -trasspurtife furctimn etc.
On the bosin of finctions squipments cas be groupsed into
(a) Bower Unitn
(a) Prime inevers
(d) Tractors
(d) Matanipl-HandilFing equipment
(6) Material-procsssinif equipmeot
2. Basis of Operation of equipment:
(a) Bquipments uasd for muving and lowening the materials found in thrir natural state egpumps, excavatons, earth woving, ternckers, cocapressors etf.'
(b) Equipments used ha procezting the materisib, for example aggregnte, soncrete and asphalt production.
(c) Equipmente uased fre tranaporting the procesed materalis
(d) Equipmente used for placong fiaish moterials.
a. Baris of purpone of equipment
(a) General Purpose + Earthworh equipment, Houting, Cancretiag,
(i) Special equipments: Piling rie, ceffer dams, tunnel boring aseling, caissons equipments ste.

SWIBCTION OR CONSTRUCAION EQUPMENT

- Per apeedy and peowsonic penstraction of a preject proper choisn of equipment in of primiary iejpartance.
- The problen of prigev aclection is farther complicated because of the wide range of equipment comanercially available.
- Following factoír iniuat be convidered belote having a final choice

1. Use of Existing Equipment

- Whes the full utilaation of new oquaipment for the future projpect is uncertain, it tany be deamble to uer axilting oiddeguipment even if ite eperation it tomawhat aure expentive.
- Depreciation ceet of the new machine of hikely to be high nod this would rane the ompiag eont of the equaprient and hence the unis cont of wark.

2. Availahility of the Equipment

- the equipment which is ensily available in the marhet should be selected for the purpose bsciuse any delay in delivery may increase the mostruction cont, vepairing of such equipmentis will aluo be dove eatily.

3. Use of Standard Equipment

- Slandand equapment in comanonly manvfactured in large mambers and hence thene are readily availalle and nederntely priced.
- Spare parta of nanulard equipmeat are easily avmilalie and are less condy.
- Aftor the work is errs, felling off edandend equipoent and its apsuy paste is generally easer than in compurison ta pon-standerd or sprialized equipment.

4. Country of Origin

- It is-always nagreatsble to huy kquipment from own country bresure this will decrease the repair coot and dowetime coel and at the aome time it will boost up nation'e econany.
- For imported equipnuent, it is preiocable to impot from, a toft currenty rather fram a hard currency country, to save foreign carrency reperves.

5. Suitability for Future Use

- If a machine is required anly for some part of its une full life, then ways to diaposed off or ita deployment on some otter site ahould be canaidered.
- Oberlescense of the machine should net be owerboked.

6. Suitability for Site Conditions

- The equipment choopn shoull suit the conditions of the job, auil vallty, working evnditions and - dilmate of the regien.

7. Size of Bquipmeat

- Earger equipment give higher contputs en full load, but its ciat of proditction is unaally gràater than that of emailer unite working on portial loed.
- For larger eqisipment tramsportation to cita ie genarally difficel and ocoily in compariton to sanaller equipmant.
- Servicing maintenanoe and ieprair foclities have io be freater for largor units. Howerver, largar machenes are uneally more suitalde for leugh workine conditions.
- Standby coot of larger size equipment in more then, that of amaller equipnient

5. Vercatility

 inter corivertilite wbere civer possible.

9. Suitability of Local Labour

- The locally availnble-operatare and iechmiciane shoula he sble ta handle the nelected equipment,
* Speral equipenent asy have escellent performance but may be diffecult to get repmired during bresk down.

- Cout of pareverion of an equipmeat is called cost of sorning to which can be added the coct of foel for ruabine the equipnseal.
- It ie the uagount by which as oquipnerst abould be hired. Is in geverally eatimated on hoerb basik.
- It should be topted thas this does net inclode the oparatare cont.

Pollowing faciors ahould affees the cest of ownine wad operating.
(a) Isitial coat of equipment, which iactudes bquipment cont tranoportation cost, loeding and unlosding clarges and instaliation coct.
(b) Severity of service condition unere which it is used.
(c) Number nif Bons wedl in a year.
(fi) Quelity of Mnintenamoe and repair.

(9) Servica We ol equipment.

- Following cost constitutes the cost of owning and operating,
(i) Depreciation cont
(ii) Maintenance \& Reppir cost
(iii) Investment coat
(iv) Fuel or energy corisumption cont
(v) Lubricating oil ecst

Nate: Anrual msintereace and repair cast $=50$ ts 100 Ch of amul depretiatien but 1002 is a foir valae.
Amal degresetian : IV/al vole-Sologe what

BCONOMIC LIFE OF CONSTRUCTION DQUPMENT

- A construction equipment has two types of life.
(a) Physical life. The potential secrice life or time period, of as equipment before which it physically becomes unable to produce a good or service.
(b) Economic life : It is defined as the time period ower which an oquipnent is expected to be use ablr, with normal repairs and maintenance, for the purpose it is hired.
- A machine can be uted for loig period (till the end of physical life) through expentive repair and manntenance cest, may haw small economic hife ie. during which it grues maximum profit Ind lowest epernting cont.
Note: Econost ble mop day be defined at the perise of replatertent of an epopmeat that naxiniser the profit from the equipnenf ar minimines the cinslatiely hoirly owring and eperating sect,
Generally the ecorowic life of on equpment it ghes is terns of yeors and verting haura.
- When should the equipment be replaced?
- If the equipment is replaced tos early, he will experience capital loss and if too late, the equipment might have passod its peciod of econtmic operation.
- The owner must consider all cocte related to the ownerihip and operation of the equipment. and the effect which the constinued use will have on theme costs.

The costs to be considered are:

1. Investment Costs

* H is the fixed coot which in ineurred at the time of purchasing equipment but it aloo includes woms other paramotera incluaive which definition get modified as :
Inveatment cost comprisco fixed esist whith is incursed at the time of purchaning equipment, interest on the moncy invested in buying the egpuiposent, taxes pertaining to the ownerahip of the equipment, insurance and etorage.
* Money spent in the purchase of equipinent, If invested in a bank would bring a return in terma of inferest
- Oppertunity of earning this interrat is loet due to purchaie of the equipment, and so the recovery of this amouat should te made on the machine's amnunt.
- Generally a combined inveatment coss inclading interest, taxes, insurance and starage in taken (the at abitit 10 ' to 12% per yenr of the valae of the equipment at the beginning of year.
- Average annual cost of the equipment is found out in following wnys

Case - W. Whea therv is vo-salvage value of the oquipment

$$
P_{\mathrm{on}}=\frac{\mathrm{F}+\mathrm{P}}{\mathrm{n}}=\frac{P(\mathrm{n}+1)}{2 \mathrm{n}}
$$

where,
$\mathrm{P}=$ Total initial coat
$P_{* z}=$ Average value
$\mathrm{a}=$ lifo is years

Case-II. When there is salvago value of the equ्pment The avertao value of the equipment is the sum of the values at the boginning of the firct year and the end of the laat year divided by 2 .

Value of equipment by year

$$
P_{n}-\frac{P+{ }^{P}-3}{2}+S{ }^{n}=\frac{P(n+1)+S(n-1)}{2 n}
$$

whers.
$\mathrm{P}=$ Total eriginal cost
$\mathrm{P}_{\mathrm{ti}}=$ Average value
$\mathrm{n}=\mathrm{Lifo}$ in years
$\mathrm{S}=$ Salvage value

Noter In both coses stove, the book alive is besed an stroight Ine dapreciation.
2. Depreciation and Replacement Costs

- Whon ene conaiders the sepiaqument of equipment, it ie nasovary to lnow the ualvago vight of the zachine and the replaceacat coat of a similar equipinent.
- Replacement oose of an oquipment must be increased 54 every pear bis balance the imoroy in cost of equipiment evecy yror.

3. Maintenance and Repair Costs

- It iv nooctiary to kerp sccurate recordin of muintenante and repoir conts as large variations if ebserned in them conts avery year.

4. Downtime Cost

- Downtine is the time that a machine is not working hesouse it is undergoing feptime adjuistonenta.
- Downtime tendr to iecreane with urage:

6. Obsolescence Cont

- Contiasing impruvements in the productive capacitim of consinction equipment have ifsitives in bowise production mota
a it obtuervel that, if by intaling a new nachine the production' cost is reduced by 5%, shel empared with the prodaction coste of an estating mackia, the oxisting machine will suffir th loan in valuo equal to 5%. Thie is definod as obsolescence loos.
- Theot improvementa, whowe ndrathagee can be gatned enly by the replocement of older equipmentr with aewer equipment, decreses the desiratality of continuing to ute the older eqnigment

HRTGTOR

* Primary purpose of a tractar is to pull or punh loods, and it may be used also as manat for many topes of equipment zuch as bulldozer, shovel, dragline, hoe, tenchers etc. Thernfare.
- It is conesslered as one of the moat important aquipmente and in indispensable on most of the construction projects whether small or bir.

Types of Tractors

Tractore are divided into folowing types:

Pactors affecting in selection of a tractor

- In nelecting a trictor, oeveral factors should be canridered and some of them are enumerated as follows
(d) sive required as per magnitude of the job.
(b) kind of job for wheth it is to be usod like bulldozing, pulling a acraper, cleariac land etc.
(c) type of footing over which it ia to operate iee high tractive or low tractive efficiency. 3 (d) firmnese of haul road.
(c) sireothneot of bsui rasi
(6) alepe at hand roat.
(d) slope of haul read.
(d) tope if work it is no do affer this job in completed.

Crawler tractor

- If a tractar is insunted no crawier, it is called eramier tracter.
- Crusler track is as coallas dasin copsisting of -steel links fnode of sterl plates cpnnested tagother loy pint and bushings.
* It in weit for auwing heavy vaite on rough serfact hamisg pose tractiont The opeimam pull that a crewler tractar can provide depende upan its weight and is equs! twethe'cpefficitat of tacias
 avpplieit by the engion Ite
- Maximan apoub is limited to 10 hugh while average speed lenhegtien 4.5 in 56 kmph . It is saited fire sbert hasel say 69 to 100 me .
- Special advastagr liee in itt abality to travel wer very raach zwrfaset sad to climb wiry nteup gradere up ie 25 io 205 at a epent of 2.75 Laph
 fore 100 is 360 HP.

Advantagns of ernwler, Iraciors

(6) Havine itare trictipe effort it ean sperate on sobl footing such us lonse or maidy wil.

(v) Thine cempect und poserhal, it can havdie wery difficuls jobe

Wheel traeter

* The bunc advantage of a wheel tractar whem curipared with' o crawler tractor lics in ita begler
 Ihe apeed is increnarif with the help of hegber mam. Rimpull wilt te decroased in appraximately the name proportion.

* It pownsers a lawer ocelficient af traction betwein fubler tyras and tome mit arfacen the whot tractas itaris sicppleg beJore developing its mated rimpull.
- Its acefial lifalate betwoon $\$$ bo 10 youre ($12,00010-15,000$ hre) doponding upen on ita harrappewer whith is generally Eove than 75-11P.

Adventuges of wheel fraturs

(6) It an thivel at higher apeed (maximum apeod ap la 50 kmph) in the job or foore from ose job to aniather.

(iin) It can travel over paved highways without damaging the surfaces.
(iv) It can operate easily which makes the operator less fatigue.
(v) A wheel tractor it very useful in the following-conditions:
(a) Lang pueh distance
(b) Fast return
(c) Looet sail little or no rock
(d) Level or downhill work
(e) Gond underfoot conditioms

* Basicly a shoves if a tool for digging, lifing and maving buit materiale, mach mail, mal, privel, hngw, tand, or ort.
 ecrdesing.
* When ashowil is aseatod an a Peper whicle it it callad as Patan Bhowel
* Pewer shorels are used mainly te eveavate carth asd jad isso trucha ur tractar (rawn wagoss
- Pawar ibsoks ent cxcavate all types of earls excepl solid pock Nothout prive hooieniage
* The hasir pate of a pantr ahovei imeluid Monstise, Col. Boom, Dippor stich, Dpper.

 15t and 191 mi

Types of Power Shovels

1. Cravler mouated powar shovel
2. Bubber syent mumbed pewer shovel,

Crawlex mounded Shovels

- II if mosunted pe unwler tracts.
- It in has wry low truvel epeed.
- It axarsa low puraras an the nod and henoe waited fer muddy and woft ground amplese

Rublber 'Tyre mounted Shovels

* It io mexuted os Pubbertyren
* It hat higher trecel apoels are asefod far anall jabe whore considerable travellian is invalved.
* Weatrts cionideralde pressary an the win sarlace bener suitalle for paad and the fisi grumal strfacte.

Operatione of Shovels

* Papition the rhaell pant the face of the axth to be excaiptad.
- The dipper is Insered is the foor of the pit, with the teeth pointing into the face.
* A penctrating furce is applied through the dipper ahaft and at the ame timp tencion is appliod to the hasting line to pull the dipper up ileng the face of the pit.
* If the depth of the face (called the depth of cut) is just right, the dipper will be filled as it reaches the top of the face.
* If the depth ts shallow it will not be possille to fill the dipper completely without exonseive penetrating force and hoikting trasion.
* If the depth a eut is more than is required te ill the dipper, the depth of penetration of the dipper into the face must be reduced, if the full face is to be exrarated or to start the excavation ubove the floce of the pit.
 vararelet, it in lapine as Drafine

+ Bier of dowdere is regpasel ly der wis of is learint

Advantages of Dractinit.

1. It an etrurat heles ite Iteil and usier water.
2. It an scavaty frencles without sharint.

Disadvantage of Primftive

Trpes of Dradines

 Operation of Draglise

 wantitite sen bele.

Output at Draglines

 ter colpt of a foglane.

 iand

- Ileriatu ay when perforited te pernit dreining af water fras the lases.
 thlicent.

- Bolldozert are very efficiem excavsting tools for sheort haal agplicatiens up to 100 n .
- It is assentially a hicavy ateel blade which is moventel on the frent ef a uactar. The lanivy blede attoched to the tractor puishta the manterial from one plate to anoiher,
- The size of a hulfaomer is indicated by the lengtis and height of the tlade.
- Dulidozart are clasified en the baris of t

(1) Position of angles

(b) Bulldosers- In them blade ws set perpondiculap to the dirgction of movernent. It paskes the earth forward and dusp to sone place
(i) Angle Desers In these blade is set at an angle with the direction of movement It puehes the carlh forward and to the wide.
(2) Based on mounting
(a) Whasel mounted
b) Crawler mourted

Advantages of the crawler-mounted bulldozer:
(a) sbility to Aeplizer zrester tractive effiort on sofl, loose er mutdy sent
(b) ahility is travel oo muddy aurficea
(c) ability to operate in rock formationa, where rubber tyres may tet damoged, which may redoce the cost of matatainitag hatd roode
(d) greater flotatian tecause of lower propsares under the tancks
(a) preator unowrentlity an jobe

Advantages of the wheel-mounted bulldozers:

(a) higher travel speeds co the job or from oon job to snother
(b) elinimation of havling equipment for traagerties the buEdozer to ther site
(c) greater owiput, eqpocially when sigaificant travelling is required
(d) hase aperutar fatigue
(c) - nhlitiy to travel ou bitumen roods without dareaging the sariaco.
(3) Based on control-for raising and lowering the blade
(a) Table exaircilled
(b) Hydratlicaily controled

Advantagea of the Cable controlled huildozets

(a) Simple to ingeall, opprate and control
(b) Sasy in soparing
(c) Redastivas in the danger of durnagiog a machies

Advantages of the Hydraulically controlled bulldozers

(a) Alte prolums a hich deves prsasure on bladee to force blades inle ground
(b) Able to mointrin a procise tattiog of the position of the Hiads.

- In additien to excavatine and hauling many other functions are also performed by Bolldozern from atart to eompletion of an project like:
(i) Cleariag land af timbor and vegetation
(河) Opening up temperary reads through anountains andf focky areait
(Ei) Móviag serth for haul distanone up to aboet 100 ar
(iv) Pulling lased tractore and scrapers
(v) laveling and gyseading sarth fill
(vi) Hadfilling tresches
(vii) Clearine construction aites of debria
(viai) Maintaining hawl rbade
(ix) Clearing the fhors of borrww and guarıy pits

Compacting Equipment

NIRoduchios

- Compaction is the method of artificially densifying the soil by pressing soil particles together into close contact, resulking in the expulsion of air and/or water from the soil mass.
* Compaction is done to increase the strength of an carth fill or an embankment.
- Compaction refers to the method employed by a compactor to impart energy into the sail to achieve compaction.
- Compactors are designed to use one or a combination of the following types of compactive efforts:
(1) Kneading action -Manpulation or rearranging
(2) Static weight - Pressure application
(3) Irapact - Sharp blow
(4) Vibration-Shaking

MYPES OF ROD DRS

Sheep's Foot Rollers

- Sheep's foot rollers are evitable for conpactine fine grained materiale such andays and mixtureer of caind and clay
- These cannoL compact granular eails such as sond and eravel.
- Depth of a layer of soil to be compacted in limited tp approximately the length of the feet.
- They are used for manipulation and compinetion of plastic clays where stratification must be eliminated, such as clay cores in dame.
- Sheep's foot rollers can ke towed or celf-propelled, and its drums consist of a cylindrical shell with protruding 'feet' which provide areas of high contact pressure under the machine.
- Feet can have mumerous whapes ond terms such as toper foot and club foot have been used to describe their particular features,
- Because of the amall contact area of the sheup's foot roller it requires 'ilarge number of passes to provide even ane complete coverage of in area of aoil.
- Sheep foot rollers, are slow, hive a very high rolling resistance;and thierefore cost per unit volume compoted is high.

Smboth-wheel Roxers

* Smooth-wheel Rellers can be self-propelled or of the towed type wittramooth steel roll surfocrs.
- These rollers may be classified by type or lyy weight.
- These rollers are eflettive in compacine fonnular seilla, auch as asad, gravel and errished stone and they are also iffective in amonthening surfaces of soils that have been compacted by timping rollers.
* When rompastine colesive soils, these rollore tend to form const ofer the surface, which may prevent ndequate corapaction in the lower mortion of.a $\quad \mathrm{lin}$.
- Self-propelled categury the anachine can be a three roll (tricycle configuration) with the front wheel uned for steering while the rear wheels ara powered for driving-
- They can be tunden two rolls type also.
- Contact area between the drum of the roller and the surface of the soil is a narrow strip anid, as a result, the stresses in the moil fall off rapidly as ilepth in the layer increases.
- This type of rolier is, therefore, limited in performunce such as, to compaction of fairly thin Clayers chat is ithitealhsMardspendine on the size of the equipment.
-. the steel drume of thr rolle mav he hnllated with water or sand to increatedilfoweiphtestaik
 is 7.3 t and that it can be ballasted to give a maximum weight of 12.8 t

Pneumatic-tyred Rollers

Pneumatic-tyrod. Ropliter'
 effect compaction below the surface.

- These rolars are used for rolline suberadefojiffild and hasee of earthfill danas.
- They can be self-propeljod or towed, snuall-or large-tyred units.
- These roliens rely on dend weight acting or upon pneumatic tyred wheela to produce the compacting offort.
- The weight of a unit may be increased by ballasting.

Thalugedtyitedeollshmareravailahle varying from 13.6-180 tonnes gross weight.

Tamping Rollers

Tamping foot compactors (Fig .5 .3) are high-speed, self-propelled, nonvibratory rollers. These rollers usually have four steel-padded wheels and can be equipped with a small blade to belp level the lift. The pads are tapered with an oval or rectangular face. The pad face is smaller than the base of the pad at the drum. As a tamping roiler moves over the surface, the feet penetrate the soil to produce a kneading action and a pressure to mix and compact the soil from the botiom to the top of the layer. With repeated passages of the roller over the surfece, the peratration of the feet decreases until the roller is said to walk out

Vibrating drum rollers are actuated by an eccentric shaft that produces the vibratory action. The eccentric shaft need be only a body that rotates about an axis other than the one through the center of mass. The vibrating mass (drum) is always isolated from the main frame of the roller. Vibrations normally vary from 1,000 to 5,000 per min.

Vibration has two measurement-mmplitude, which is the measurement of the movement, or throw, and frequency, which is the rate of the movement, or number of vibrations (oseillations) per second or minute (vpm). The amplitude controls the effective area, or depth to which the vibration is transmitted into the soll, while the frequency determines the number of blows or oscillstions that are transmitted in a period of time.

The impacts imparted by the vibrations produce pressure waves that set the soil particles in motion, producing compaction. In compacting gronuiar material, frequency (the number of blows in a given period) is usually the critical parameter as opposed to amplitute.

Compaction results are a function of the frequency of the blows, the force of the blows, and the time period over which the blows are applied. The frequency/uime relationship aceounts for the slower working speed requirement when using vibratory compactors. Working speed is important as it dictates how long i particular part of the fill is compucted. A working speed of 2 to A mph provides the best resultis when using vibratory compactors.
amplitiade The verrical disiance the whroting drum or plate is displaced from the resi posilion by an eccentric mament,

2. Tamping rollers

Vilurating Compastarn

- Vorsiery cenpaction anhunse thr perfarmaree of statir weifti roilten ly adiag dynamic

 as and, cravi and polatively large clones
$\ddot{\sim}$
- As these natriab are vibused, tbe partites slifit thrit position and nestle muer clasely with sdjpent partieloe to incribece ihr dentitg-d-lit etpes
- Tyres of Yalrating compacters are:
(a) Thissline shetpls foot mallers.
(3) Vhataint aycel- Iran zeileft,
(e) Varating potumatis-tyot millirn,
(d) Whrsting phaist ar slaes

Manually Operated Vibratary Plate Compactors

 reil thas tho later viluating tollors

 aboer the base-plate men sprage ar other fors of flesibir' nounling.

Mansally Opersted Vibratory Temping Compacters

Whatary Taryitag Conpaita

 - - ratp -

- The most commonly used machines have a mass in-che-range-of-50-160 kg , and usually operate at a.freģuency of about 10 Hz .
* Their main mode of compaction is by impact and they are suited for the-cempaetion-of-most: types of soil.
- Beeause of their low output they are used in confinod areas or spaces, where their portability and maneuverability are a particular advantage.

Manually Operated Rammer Compactors.

- Ramner compactors are soll-propelled in which each blow moves them ahead slightly to contact new soil.
. These twits range in impact from 40 to 120 per \sec at an impact rate up to 850 per min.
Prerforminet frimeianhude lieflow, area covered per hour, and depth of compaction (dif) in can.

7.Soil reinforcing techniques

Reinforen 5all

 mectancal prapertes Sole ace stref ie moppoene tot und io

50 ENBLI

 drien inbe do prual an "bilern ado" The inboker porm

III. MATERLALS

There are tury tasic matertals sned is the onemmelinan of reinfered soil.
, Sadior fill wietix

- Briaformement ar anclor syanm

These seen tis be isbequere lifite relinionkiy betwen the mitirtily usel Blasod on
 orr shened. We will dicios sar hy mee. fir materals dat ane belas used.

Soll ar filit matris

The sbut propertios of suit ram ber
 form eark melficced sinucure in logs tern coweational sfruchers the sol ised is the well wafed mhertionlens soit er a pood cobetivn fobelanal dill alhargh puse colesive solla have bem lexd with sicoms. The advatuge of onbenondes sell met the they ate sathe five frainive aut susopaition to frus amd mlatively inan-

The anly disadvamapp is ins rees. A_{1} a cosserileat soaqrombe hotseen the zeclakal bearfit: from seletimits wall and sconomic benclits fum cuhetive sal, cukvive firizional mag be perfervis,

Soweminc ilie iseof wave martal a 0 ill for retafucal will structies is aurnotive from an encitomental an wall as menemic thive prout. Mire wastes arei pulveriatil fiul ash are the wisers umally vaquieged

Brinforremes

A variey of menertal acluting sumet, cmatrot Has, foer wol, alber, almainut and therracplatios can te inel as renfluecing awarnal.
 anctons abt shest material dain, plowies mpen vegriaitun and smbirations of these or taber maiental finue

 formod from alumintuint. enpper, peloners and Lans fler redifecod plavic and banboos. The form of stanten givanimel or toond seol arips ans wher flain or with myjections wath is tis liserruare the fibetion between reliflucemey and fill.

Flyare 3.1

- Grito ur an aho uned an reinforcmers. Getils are Eermul fran anel in the funs nf plain we whenims west medier fies exposict exal.

Flyant 3.2
 metal arch as givialoul sted shet Gatric of expanded meat noe reetiag the ertiani for a and

Fosilhb linuse elecerias loving ane ar uno permoukel dwartion shich ati as atatments ir andinns to the fill or soll. They may be made fiom moserials thiko meol, ropes, platite of combiustion of materiah sand as melbish and tyme sued and tores er.

Coulpathe refoformimint tim bor fuemeil by combanay difireni noterals and msiesials
 anchors iteperating te the field protions rogutinsest

 to cracpl, and Aretitioy, cae af farilling a tuiph cosffielent of Eiction undur alberence wih the soll higeties with low ceot nod ready avalablily.

Cearynithuties

Conynderios are mannale juulions Hey mer flexible and phaur (obeet Iliey) They are
 and mrnatawe fiom raxund amathls. Theg find ine in Sicorclinkal expliremete to a orpornact. filans drains, menforcemeck, hydauler tamion, protections ast movion contrul nywn

1 Goctemiles ane poruat prorguteniks that revemble a thack stoong doth or blaniat whth iiv strand asal hier vivilh Thiry aer plane pinemble, pulyneric meferfal bat an woully

 sach as fue bey can le vuvat, no- voven or kntivel. Wowen grotentiles ame prodaced by wowing or iutistaring, saailly at riyfor angles of fow tir louse set of Dem. Nuhsweren provestifn ane prodsced by mechanial

 sma diuck and heve a meabluit aren of 156 so 3000 gmenn'?

Figure 3.3
 apoywither with syare or motiagily ayenigys that are larger tian the thickams of de the te rith twitioes tapes from 5 to
 6 1506 gim

Figare 1.4
IIL. Gounets an similir to gougrath bat lave
 syary of pocungriat les menending perall-logaty

Figure 35

IV. SOIL REINFORCEMENT

TECHNIQEES

Sol adoforsment tectivigas can be divilat met fwa major vatigories

1. lmita null retoforymum
z. Canmurtid ioff imadiucernat

In the inaliu reinforcteset techablue de ontifoccement is pisiod in an undbuabed sol in fank a ienforced soil wertion Ther belogen the enfanique ul suid nuiling ani wail diverliag The tadafortunemi used foe initu amochates is emully lisur onther be fir mondial if lastallaition.

1. Opes excavaition waing sell raile:

Fipare 4.1
Vertical on sierply bartined cies an be mode for open mocasation wister right soil nals is rolnforcuatoch Such cuas are aleo referod is as

 ary consoruitod from top 10 botinas The lacini of sieh wills is iesually in te foris of a nie-mpla evinfuicod shat Crefe patiel, alifouph mesal plees and ather types of furets bave alsa fentianed Sait baik am invalled in an inclageinit of 20 is 2 名 dogeestos the hotimnend noar the pound serfare so in io avold lurrovedae widergroand utlith and the irclination is rafuced to 10 te 15 degrees nes we godapes fian the cuic

2. Cunstructed and ratiforcement techadyour 1. Relalereed soil strarives with vertical face:-

The faring bually comprises of papfitriegted consreto of steel panols juined twgethec by at interloclian arangemeni. The soit ioed as hacknll in seich cases is branalir wal with less fan 15\% fies to endele developmex of largi fiketon betwem die ishinfortaime and soll. The
 they have largn temsile strenceh as wall as line
oerrisibily. Cimsinictien iakes plare frum bowinit upwants and the siminfaccement is plored riqponially as layes of sal aie somporimi, mex afier the otber.

Figere 1.2
Tle cneminaried wif telaforneitacol iechabese deatribe the acitrigar nine the soisforconert is pland at the same time it an irgperted and remaided soll. Sech tectinique -are ufies calkel as luttuas ep powest an flvey imnhlve ter pluwnesy of a fili aki inisfimerame sitrialusuandy, these laclude sinciures sarh as enimorred seli embinkmats asd briden abeirtent. The reinfoccement seed for the compiructect eakgory in in the form of strips, aun or grift.

v. APPLICATIONS OF SOIL. REINFORCEMENT

1. Siepe fallere erpairs

Plpere $\$.1$
Larye wal mall lamdaldes and fallares of serabal sigee offies occe in ames wher the value of tie coviomment (fier iecinical or economind-ar
 slope to the oritigal for an dowe as powible to ile onginas promety. Geogide ailow aly the sarme self of the landstid of wetarias the slopes-then
 ixperitue a sull wilh |eiser merharical charastristica. The zegaid reinforcal slope con le eandy wgratied with ile locil essentes. ia order io etacin to tast imerguitas with to sumonitieg
thsieuminect.

2. Slope curting repairs

The imatillation of pipelines and other
 Alupe in provertet of valuable arten wher the Amhority imposics to rphir the cuntint in the *olipinal stasaino. This may pevduce igooiectmical problems due to the lact ihat ile escovaied wail results in lorave mechinital charatieriaics than the onginal sell in the sloce, Gengridsallew inryovine the sathility of the soit the sope can be rebiat whenout wibif experaive cosolidadoa ledrigrae.

1. Steep stopes embankinents and thuads

(a) Highway embankment en hill slope
Figere 52
Thew arp mary stuksion wher the startage of space of fill maseris calls for tbe
 sisp slope gredly in excrse if the mitarilly sthir ropio

Gengrid ivintorocd soll triature provide a sofe, sosand ad examentral solidion whide can to usel for unaw of thest appticatione

- Noise presection bunds slong heghwayz. tallways and airport tavivays
* Blas protection exdamburts
- Incrave of tite avalable volume in exlausted fanatilis
- Comanction of enchandsers danes for vabld or Iiquat tigeanifaerss

In all thooe applications, the ebhoocre flexibitty, the sase of construction, and the use of

 strukiter

4. Widpaing of slape crest.

Thew ano difliwes cases whier a mather fla slope has te be coaverted so a sub-veratal wall enlarpenems of parkine arias. smopthing of sharp mail bends, lane reclanofive pheocts and howins: developponts are jast earepten of flums In monst of these tases she tor of the slope camer be neved

Bounilaties (fivess, mads, esw). Therefire the erest of the sloper thatl be widmul making tie slupe stoeper or even verical. Geogrist allow butiding berp shops and wally with ahand any lacally imilatite firl soit. The feor can fe fuith whth is Fwatated ar concreir finishing diffeces wilurives kan be easily. mplemmand at deaign and
 emircenentist fequimemerts. The ectuphal shppe hav usailly io be oat at the toeaem in yheld edough jyace far placing the reinforcing geogrids. Alit the oprrittots cie be jerfoomed wid standant surti. movies machinny and mailly aviblble noels, even by umkilled lobourms. And very lenportant, the maltie and the activities ta froet of the slope iat mot

5. Brtdge ahatments and wing walls

Hindge abumants and wing waltr are ation the suth retaining strectures that suipport the highest hods. Besilk tle high vertical aut harimestal loas divertly applied by toe ferdge deck, dywank loaks from lwavy taffic, and swastimis seismic laids, thallenpe ine dmex mapremet, Soft faundarian milk, hef water tuhle
 furthar probiem. Cetogrid neinforcoil soll saructures provide sweng yel fleable. moloing ithacture
 and huily to maist all the antixiguted houds with the noloted Facken ut Safery, even with liow phality filf suit. Safi sed subitizalion and drimige pedileen can to solkel with aroptik ant giocouperies. The face can he drolyow as filall apy requaretanta rezainling visual and emitroiemertal impact.

(b) Beider abornem:-

Fgure 5.3

6. Seil retaining stracturrs

Soll retaining sinatures can be dividof intor

- FACE WAII 5 which afe umally designel it cover a seep mick stope or a clit for envirensential and sofety masens. This kijol of neall umally has only seall or no lioriosoual
 internal outnard pensare of the fill soil
- counterscarp walls wild mus suppor the coovanim load of a sloping tematn
an the up. The will ppouers no be rmiknod are usuilly iesch ligher ilau fee a lace wall.
* RETATNING WALIS which aie bually
 Inids. The design and conatruction of face walle setainirg walh and coxntroncary walls moy have to deal wilh-iminelval, pracical and coonenfal peoblems due to avaldiality of the Ill will worss in the Job sive with operating
 and overall tast and >0 on. The Treluikal Audueities rat the dient ulun mquier specifie. volutions, somantiser wilh a swherater facs, while wometimes a concreft fact in mevtort tyje of "rigid" fave is pectirnod.

comidered, sach as denignigg stopper slojes ar isiog lower sualixy fill seil. Ceogrids allow div soce in lie bulk at any indinatlon wht the repared Farnors of Solfly. The sjerific wechiar es loaks, in wrll as the foramic of Melande lowne san toe ficcurporated lisio te design it peovide safe comanucion to the Cliers, Aie Enphiter and the Contracmi. Almos any locally anathil sail tan be ued lis the poggid reinfocurd exhambent itis farilly dia jredice very larar awing in leath cuses and coostractlon dime.

Figert 4.5
Figert 45

Geognt mefloted walls can be designed and thait in fithil the muso vaied mquirentitis in ierms of lued support und lauw firishing progridn pinfored sot stucunes privile a cheap and
 the experisice of engheris cae belp to find the propes solaino, elither with a vogethied or coocite fatit of erw solutions can be drvpliaped foe the Fare flimblis ac well as for the continuction meithed and all ihe anelliny dosign boaik.

7. Read and Pailway embanikments

Finad and railway emhankmares are smally large and high each stnuctures, whech segatere conidoc:ble quentiles of nill suil aut lunt.

The coss if the fll wall and lo triesjort from the gaantes, is nelli as the value of the land, may be is high that seme alumatives muy te

[^0]: Schiomatie of an MVHR bystom of vertilation

[^1]: Necteriosil iret and mechanical extract lor athence

[^2]: Detall of porbing gyand

